Spaces:
Running
Running
File size: 3,848 Bytes
d20f4f3 e615f64 d20f4f3 a3c1650 e615f64 554867f d20f4f3 c7b56d5 d20f4f3 5eb2ba5 d20f4f3 554867f d20f4f3 9ee3c0a d20f4f3 3a4430e d20f4f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
from typing import List
import os
import numpy as np
import supervision as sv
import uuid
import torch
from tqdm import tqdm
import gradio as gr
import torch
import numpy as np
from PIL import Image
import spaces
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
def calculate_end_frame_index(source_video_path):
video_info = sv.VideoInfo.from_video_path(source_video_path)
return min(
video_info.total_frames,
video_info.fps * 2
)
def annotate_image(
input_image,
detections,
labels
) -> np.ndarray:
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
return output_image
@spaces.GPU
def process_video(
input_video,
labels,
progress=gr.Progress(track_tqdm=True)
):
labels = labels.split(",")
video_info = sv.VideoInfo.from_video_path(input_video)
total = calculate_end_frame_index(input_video)
frame_generator = sv.get_video_frames_generator(
source_path=input_video,
end=total
)
result_file_name = f"{uuid.uuid4()}.mp4"
result_file_path = os.path.join("./", result_file_name)
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
for _ in tqdm(range(total), desc="Processing video.."):
frame = next(frame_generator)
# list of dict of {"box": box, "mask":mask, "score":score, "label":label}
results = query(frame, labels)
detections = sv.Detections.from_transformers(results[0])
final_labels = []
for id in results[0]["labels"]:
final_labels.append(labels[id])
frame = annotate_image(
input_image=frame,
detections=detections,
labels=final_labels,
)
sink.write_frame(frame)
return result_file_path
def query(image, texts):
inputs = processor(text=texts, images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = torch.Tensor([image.shape[:-1]])
results = processor.post_process_object_detection(outputs=outputs, threshold=0.3, target_sizes=target_sizes)
print("results", results)
return results
with gr.Blocks() as demo:
gr.Markdown("## Zero-shot Object Tracking with OWLv2 🦉")
gr.Markdown("This is a demo for zero-shot object tracking using [OWLv2](https://huggingface.co/google/owlv2-base-patch16-ensemble) model by Google.")
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. 👇")
with gr.Tab(label="Video"):
with gr.Row():
input_video = gr.Video(
label='Input Video'
)
output_video = gr.Video(
label='Output Video'
)
with gr.Row():
candidate_labels = gr.Textbox(
label='Labels',
placeholder='Labels separated by a comma',
)
submit = gr.Button()
gr.Examples(
fn=process_video,
examples=[["./cats.mp4", "dog,cat"]],
inputs=[
input_video,
candidate_labels,
],
outputs=output_video
)
submit.click(
fn=process_video,
inputs=[input_video, candidate_labels],
outputs=output_video
)
demo.launch(debug=False, show_error=True)
|