File size: 12,210 Bytes
9cc3ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from functools import partial
import torch
import torch.nn as nn

import spconv.pytorch as spconv
from spconv.core import ConvAlgo


def replace_feature(out, new_features):
    return out.replace_feature(new_features)


def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0,
                   conv_type='subm', norm_fn=None):

    if conv_type == 'subm':
        conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key, algo=ConvAlgo.Native)
    elif conv_type == 'spconv':
        conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
                                   bias=False, indice_key=indice_key, algo=ConvAlgo.Native)
    elif conv_type == 'inverseconv':
        conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False, algo=ConvAlgo.Native)
    else:
        raise NotImplementedError

    m = spconv.SparseSequential(
        conv,
        norm_fn(out_channels),
        nn.ReLU(),
    )

    return m


class SparseBasicBlock(spconv.SparseModule):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None):
        super(SparseBasicBlock, self).__init__()

        assert norm_fn is not None
        bias = norm_fn is not None
        self.conv1 = spconv.SubMConv3d(
            inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key, algo=ConvAlgo.Native
        )
        self.bn1 = norm_fn(planes)
        self.relu = nn.ReLU()
        self.conv2 = spconv.SubMConv3d(
            planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key, algo=ConvAlgo.Native
        )
        self.bn2 = norm_fn(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = replace_feature(out, self.bn1(out.features))
        out = replace_feature(out, self.relu(out.features))

        out = self.conv2(out)
        out = replace_feature(out, self.bn2(out.features))

        if self.downsample is not None:
            identity = self.downsample(x)

        out = replace_feature(out, out.features + identity.features)
        out = replace_feature(out, self.relu(out.features))

        return out


class VoxelResBackBone8xVoxelNeXt(nn.Module):
    def __init__(self, input_channels, grid_size, **kwargs):
        super().__init__()
        norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)

        spconv_kernel_sizes = [3, 3, 3, 3]
        channels = [16, 32, 64, 128, 128]
        out_channel = 128

        self.sparse_shape = grid_size[::-1] + [1, 0, 0]

        self.conv_input = spconv.SparseSequential(
            spconv.SubMConv3d(input_channels, channels[0], 3, padding=1, bias=False, indice_key='subm1', algo=ConvAlgo.Native),
            norm_fn(channels[0]),
            nn.ReLU(),
        )
        block = post_act_block

        self.conv1 = spconv.SparseSequential(
            SparseBasicBlock(channels[0], channels[0], norm_fn=norm_fn, indice_key='res1'),
            SparseBasicBlock(channels[0], channels[0], norm_fn=norm_fn, indice_key='res1'),
        )

        self.conv2 = spconv.SparseSequential(
            # [1600, 1408, 41] <- [800, 704, 21]
            block(channels[0], channels[1], spconv_kernel_sizes[0], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[0]//2), indice_key='spconv2', conv_type='spconv'),
            SparseBasicBlock(channels[1], channels[1], norm_fn=norm_fn, indice_key='res2'),
            SparseBasicBlock(channels[1], channels[1], norm_fn=norm_fn, indice_key='res2'),
        )

        self.conv3 = spconv.SparseSequential(
            # [800, 704, 21] <- [400, 352, 11]
            block(channels[1], channels[2], spconv_kernel_sizes[1], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[1]//2), indice_key='spconv3', conv_type='spconv'),
            SparseBasicBlock(channels[2], channels[2], norm_fn=norm_fn, indice_key='res3'),
            SparseBasicBlock(channels[2], channels[2], norm_fn=norm_fn, indice_key='res3'),
        )

        self.conv4 = spconv.SparseSequential(
            # [400, 352, 11] <- [200, 176, 6]
            block(channels[2], channels[3], spconv_kernel_sizes[2], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[2]//2), indice_key='spconv4', conv_type='spconv'),
            SparseBasicBlock(channels[3], channels[3], norm_fn=norm_fn, indice_key='res4'),
            SparseBasicBlock(channels[3], channels[3], norm_fn=norm_fn, indice_key='res4'),
        )

        self.conv5 = spconv.SparseSequential(
            # [200, 176, 6] <- [100, 88, 3]
            block(channels[3], channels[4], spconv_kernel_sizes[3], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[3]//2), indice_key='spconv5', conv_type='spconv'),
            SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res5'),
            SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res5'),
        )
        
        self.conv6 = spconv.SparseSequential(
            # [200, 176, 6] <- [100, 88, 3]
            block(channels[4], channels[4], spconv_kernel_sizes[3], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[3]//2), indice_key='spconv6', conv_type='spconv'),
            SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res6'),
            SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res6'),
        )
        self.conv_out = spconv.SparseSequential(
            # [200, 150, 5] -> [200, 150, 2]
            spconv.SparseConv2d(channels[3], out_channel, 3, stride=1, padding=1, bias=False, indice_key='spconv_down2', algo=ConvAlgo.Native),
            norm_fn(out_channel),
            nn.ReLU(),
        )

        self.shared_conv = spconv.SparseSequential(
            spconv.SubMConv2d(out_channel, out_channel, 3, stride=1, padding=1, bias=True, algo=ConvAlgo.Native),
            nn.BatchNorm1d(out_channel),
            nn.ReLU(True),
        )

        self.forward_ret_dict = {}
        self.num_point_features = out_channel
        self.backbone_channels = {
            'x_conv1': channels[0],
            'x_conv2': channels[1],
            'x_conv3': channels[2],
            'x_conv4': channels[3]
        }

    def bev_out(self, x_conv, index):
        features_cat = x_conv.features
        indices_cat = x_conv.indices[:, [0, 2, 3]]
        spatial_shape = x_conv.spatial_shape[1:]

        indices_unique, _inv = torch.unique(indices_cat, dim=0, return_inverse=True)
        features_unique = features_cat.new_zeros((indices_unique.shape[0], features_cat.shape[1]))
        features_unique.index_add_(0, _inv, features_cat)

        perm = torch.arange(_inv.size(0), dtype=_inv.dtype, device=_inv.device)
        perm = _inv.new_empty(indices_unique.size(0)).scatter_(0, _inv, perm)
        index_out = index[perm]

        x_out = spconv.SparseConvTensor(
            features=features_unique,
            indices=indices_unique,
            spatial_shape=spatial_shape,
            batch_size=x_conv.batch_size
        )
        return x_out, index_out

    def track_voxels_2d(self, x, x_downsample, index, kernel_size=3):
        _step = int(kernel_size//2)
        kernel_offsets = [[i, j] for i in range(-_step, _step+1) for j in range(-_step, _step+1)]
        #kernel_offsets.remove([0, 0])
        kernel_offsets = torch.Tensor(kernel_offsets).to(x.indices.device)

        batch_size = x.batch_size
        index_batch = []
        indices_batch = []

        for b in range(batch_size):
            batch_index = x.indices[:, 0]==b
            indices_ori = x.indices[batch_index]
            features_ori = index[batch_index]

            features_fore = features_ori
            coords_fore = indices_ori

            voxel_kerels_imp = kernel_offsets.unsqueeze(0).repeat(features_fore.shape[0],1, 1)
            indices_fore_kernels = coords_fore[:, 1:].unsqueeze(1).repeat(1, kernel_offsets.shape[0], 1)
            indices_with_imp = indices_fore_kernels + voxel_kerels_imp
            features_fore = features_fore.repeat(1, kernel_offsets.shape[0])

            selected_indices = indices_with_imp
            spatial_indices = (selected_indices[:, :, 0] >=0) * (selected_indices[:, :, 1] >=0) * \
                                (selected_indices[:, :, 0] < x.spatial_shape[0]) * (selected_indices[:, :, 1] < x.spatial_shape[1])
            selected_indices = selected_indices[spatial_indices]
            features_fore = features_fore[spatial_indices].view(-1, 1)

            selected_indices = torch.cat([torch.ones((selected_indices.shape[0], 1), device=features_fore.device)*b, selected_indices], dim=1)

            features_fore, coords_fore = features_fore, selected_indices
            index_batch.append(features_fore)
            indices_batch.append(coords_fore)

        index_batch = torch.cat(index_batch)
        indices_batch = torch.cat(indices_batch)

        return self.index_from_sparse(index_batch, indices_batch, x_downsample, True)

    def index_from_sparse(self, feature, indices, x_target, _2d=False):
        sparse_index = spconv.SparseConvTensor(
            features=feature,
            indices=indices.int(),
            spatial_shape=x_target.spatial_shape,
            batch_size=x_target.batch_size
        )
        dense_index = sparse_index.dense()
        indices_downsample = x_target.indices.long()
        if _2d:
            index_downsample = dense_index[indices_downsample[:, 0], :, indices_downsample[:, 1], indices_downsample[:, 2]]
        else:
            index_downsample = dense_index[indices_downsample[:, 0], :, indices_downsample[:, 1], indices_downsample[:, 2], indices_downsample[:, 3]]
        return index_downsample

    def forward(self, batch_dict):
        """
        Args:
            batch_dict:
                batch_size: int
                vfe_features: (num_voxels, C)
                voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx]
        Returns:
            batch_dict:
                encoded_spconv_tensor: sparse tensor
        """
        voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords']
        batch_size = batch_dict['batch_size']
        input_sp_tensor = spconv.SparseConvTensor(
            features=voxel_features,
            indices=voxel_coords.int(),
            spatial_shape=self.sparse_shape,
            batch_size=batch_size
        )
        x = self.conv_input(input_sp_tensor)

        x_conv1 = self.conv1(x)
        x_conv2 = self.conv2(x_conv1)
        x_conv3 = self.conv3(x_conv2)
        x_conv4 = self.conv4(x_conv3)
        x_conv5 = self.conv5(x_conv4)
        x_conv6 = self.conv6(x_conv5)

        x_conv5.indices[:, 1:] *= 2
        x_conv6.indices[:, 1:] *= 4
        x_conv4 = x_conv4.replace_feature(torch.cat([x_conv4.features, x_conv5.features, x_conv6.features]))
        x_conv4.indices = torch.cat([x_conv4.indices, x_conv5.indices, x_conv6.indices])

        index6_out = torch.arange(x_conv4.indices.shape[0], device=x_conv4.indices.device).unsqueeze(-1)
        out_bevout, index_bevout = self.bev_out(x_conv4, index6_out)

        out = self.conv_out(out_bevout)
        index_out = self.track_voxels_2d(out_bevout, out, index_bevout)

        out = self.shared_conv(out)

        batch_dict.update({
            'encoded_spconv_tensor': out,
            'encoded_spconv_tensor_stride': 8,
            'out_voxels': x_conv4.indices[index_out.squeeze(-1)],
        })
        batch_dict.update({
            'multi_scale_3d_features': {
                'x_conv1': x_conv1,
                'x_conv2': x_conv2,
                'x_conv3': x_conv3,
                'x_conv4': x_conv4,
            }
        })
        batch_dict.update({
            'multi_scale_3d_strides': {
                'x_conv1': 1,
                'x_conv2': 2,
                'x_conv3': 4,
                'x_conv4': 8,
            }
        })
        
        return batch_dict