File size: 11,715 Bytes
04db102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d887ae4
 
04db102
 
5abaf06
 
 
 
 
04db102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8889104
04db102
 
8889104
 
 
04db102
 
8889104
 
 
 
04db102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a3a53
8bb8db9
64baed0
6408eff
d073745
f2a3a53
04db102
 
 
 
 
5abaf06
04db102
 
 
 
 
 
 
 
 
 
 
 
a946c21
04db102
 
 
 
 
 
5abaf06
 
04db102
a38cbe7
04db102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5abaf06
04db102
 
 
 
 
 
a38cbe7
 
 
 
 
 
 
 
 
 
04db102
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import spaces
import os
import sys
import tempfile
import shutil
from PIL import Image, ImageDraw, ImageFont, ImageOps
import fitz
import re
import warnings
import numpy as np
import base64
from io import StringIO, BytesIO

MODEL_NAME = 'deepseek-ai/DeepSeek-OCR'

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModel.from_pretrained(MODEL_NAME, _attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, trust_remote_code=True, use_safetensors=True)
model = model.eval().cuda()

MODEL_CONFIGS = {
    "Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
    "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
    "Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
    "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
    "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}
}

TASK_PROMPTS = {
    "πŸ“‹ Markdown": {"prompt": "<image>\n<|grounding|>Convert the document to markdown.", "has_grounding": True},
    "πŸ“ Free OCR": {"prompt": "<image>\nFree OCR.", "has_grounding": False},
    "πŸ“ Locate": {"prompt": "<image>\nLocate <|ref|>text<|/ref|> in the image.", "has_grounding": True},
    "πŸ” Describe": {"prompt": "<image>\nDescribe this image in detail.", "has_grounding": False},
    "✏️ Custom": {"prompt": "", "has_grounding": False}
}

def extract_grounding_references(text):
    pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
    return re.findall(pattern, text, re.DOTALL)

def draw_bounding_boxes(image, refs, extract_images=False):
    img_w, img_h = image.size
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
    draw2 = ImageDraw.Draw(overlay)
    font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 25)
    crops = []
    
    color_map = {}
    np.random.seed(42)

    for ref in refs:
        label = ref[1]
        if label not in color_map:
            color_map[label] = (np.random.randint(50, 255), np.random.randint(50, 255), np.random.randint(50, 255))

        color = color_map[label]
        coords = eval(ref[2])
        color_a = color + (60,)
        
        for box in coords:
            x1, y1, x2, y2 = int(box[0]/999*img_w), int(box[1]/999*img_h), int(box[2]/999*img_w), int(box[3]/999*img_h)
            
            if extract_images and label == 'image':
                crops.append(image.crop((x1, y1, x2, y2)))
            
            width = 5 if label == 'title' else 3
            draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
            draw2.rectangle([x1, y1, x2, y2], fill=color_a)
            
            text_bbox = draw.textbbox((0, 0), label, font=font)
            tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
            ty = max(0, y1 - 20)
            draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color)
            draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255))
    
    img_draw.paste(overlay, (0, 0), overlay)
    return img_draw, crops

def clean_output(text, include_images=False, remove_labels=False):
    if not text:
        return ""
    pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
    matches = re.findall(pattern, text, re.DOTALL)
    img_num = 0
    
    for match in matches:
        if '<|ref|>image<|/ref|>' in match[0]:
            if include_images:
                text = text.replace(match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1)
                img_num += 1
            else:
                text = text.replace(match[0], '', 1)
        else:
            if remove_labels:
                text = text.replace(match[0], '', 1)
            else:
                text = text.replace(match[0], match[1], 1)
    
    return text.strip()

def embed_images(markdown, crops):
    if not crops:
        return markdown
    for i, img in enumerate(crops):
        buf = BytesIO()
        img.save(buf, format="PNG")
        b64 = base64.b64encode(buf.getvalue()).decode()
        markdown = markdown.replace(f'**[Figure {i + 1}]**', f'\n\n![Figure {i + 1}](data:image/png;base64,{b64})\n\n', 1)
    return markdown

@spaces.GPU(duration=60)
def process_image(image, mode, task, custom_prompt):
    if image is None:
        return " Error Upload image", "", "", None, []
    if task in ["✏️ Custom", "πŸ“ Locate"] and not custom_prompt.strip():
        return "Enter prompt", "", "", None, []
    
    if image.mode in ('RGBA', 'LA', 'P'):
        image = image.convert('RGB')
    image = ImageOps.exif_transpose(image)
    
    config = MODEL_CONFIGS[mode]
    
    if task == "✏️ Custom":
        prompt = f"<image>\n{custom_prompt.strip()}"
        has_grounding = '<|grounding|>' in custom_prompt
    elif task == "πŸ“ Locate":
        prompt = f"<image>\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image."
        has_grounding = True
    else:
        prompt = TASK_PROMPTS[task]["prompt"]
        has_grounding = TASK_PROMPTS[task]["has_grounding"]
    
    tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
    image.save(tmp.name, 'JPEG', quality=95)
    tmp.close()
    out_dir = tempfile.mkdtemp()
    
    stdout = sys.stdout
    sys.stdout = StringIO()
    
    model.infer(tokenizer=tokenizer, prompt=prompt, image_file=tmp.name, output_path=out_dir,
                base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"])
    
    result = '\n'.join([l for l in sys.stdout.getvalue().split('\n') 
                        if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip()
    sys.stdout = stdout
    
    os.unlink(tmp.name)
    shutil.rmtree(out_dir, ignore_errors=True)
    
    if not result:
        return "No text", "", "", None, []
    
    cleaned = clean_output(result, False, False)
    markdown = clean_output(result, True, True)
    
    img_out = None
    crops = []
    
    if has_grounding and '<|ref|>' in result:
        refs = extract_grounding_references(result)
        if refs:
            img_out, crops = draw_bounding_boxes(image, refs, True)
    
    markdown = embed_images(markdown, crops)
    
    return cleaned, markdown, result, img_out, crops

@spaces.GPU(duration=300)
def process_pdf(path, mode, task, custom_prompt):
    doc = fitz.open(path)
    texts, markdowns, raws, all_crops = [], [], [], []
    
    for i in range(len(doc)):
        page = doc.load_page(i)
        pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
        img = Image.open(BytesIO(pix.tobytes("png")))
        
        text, md, raw, _, crops = process_image(img, mode, task, custom_prompt)
        
        if text and text != "No text":
            texts.append(f"### Page {i + 1}\n\n{text}")
            markdowns.append(f"### Page {i + 1}\n\n{md}")
            raws.append(f"=== Page {i + 1} ===\n{raw}")
            all_crops.extend(crops)
    
    doc.close()
    
    return ("\n\n---\n\n".join(texts) if texts else "No text in PDF",
            "\n\n---\n\n".join(markdowns) if markdowns else "No text in PDF",
            "\n\n".join(raws), None, all_crops)

def process_file(path, mode, task, custom_prompt):
    if not path:
        return "Error Upload file", "", "", None, []
    
    if path.lower().endswith('.pdf'):
        return process_pdf(path, mode, task, custom_prompt)
    else:
        return process_image(Image.open(path), mode, task, custom_prompt)

def toggle_prompt(task):
    if task == "✏️ Custom":
        return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes")
    elif task == "πŸ“ Locate":
        return gr.update(visible=True, label="Text to Locate", placeholder="Enter text")
    return gr.update(visible=False)

def load_image(file_path):
    if not file_path:
        return None
    if file_path.lower().endswith('.pdf'):
        doc = fitz.open(file_path)
        page = doc.load_page(0)
        pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
        img = Image.open(BytesIO(pix.tobytes("png")))
        doc.close()
        return img
    else:
        return Image.open(file_path)

with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR") as demo:
    gr.Markdown("""
    # πŸš€ DeepSeek-OCR Demo
    **Convert documents to markdown, extract raw text, and locate specific content with bounding boxes. It takes 20~ sec for markdown and 3~ sec for locate task. Check the info at the bottom of the page for more information.**
    
    **Hope this tool was helpful! If so, a quick like ❀️ would mean a lot :)**
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            file_in = gr.File(label="Upload Image or PDF", file_types=["image", ".pdf"], type="filepath")
            input_img = gr.Image(label="Input Image", type="pil", height=300)
            mode = gr.Dropdown(list(MODEL_CONFIGS.keys()), value="Gundam", label="Mode")
            task = gr.Dropdown(list(TASK_PROMPTS.keys()), value="πŸ“‹ Markdown", label="Task")
            prompt = gr.Textbox(label="Prompt", lines=2, visible=False)
            btn = gr.Button("Extract", variant="primary", size="lg")
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("πŸ“ Text"):
                    text_out = gr.Textbox(lines=20, show_copy_button=True, show_label=False)
                with gr.Tab("🎨 Markdown"):
                    md_out = gr.Markdown("")
                with gr.Tab("πŸ–ΌοΈ Boxes"):
                    img_out = gr.Image(type="pil", height=500, show_label=False)
                with gr.Tab("πŸ–ΌοΈ Cropped Images"):
                    gallery = gr.Gallery(show_label=False, columns=3, height=400)
                with gr.Tab("πŸ” Raw"):
                    raw_out = gr.Textbox(lines=20, show_copy_button=True, show_label=False)
    
    gr.Examples(
        examples=[
            ["examples/ocr.jpg", "Gundam", "πŸ“‹ Markdown", ""],
            ["examples/reachy-mini.jpg", "Gundam", "πŸ“ Locate", "Robot"]
        ],
        inputs=[input_img, mode, task, prompt],
        cache_examples=False
    )
    
    with gr.Accordion("ℹ️ Info", open=False):
        gr.Markdown("""
        ### Modes
        - **Gundam**: 1024 base + 640 tiles with cropping - Best balance
        - **Tiny**: 512Γ—512, no crop - Fastest
        - **Small**: 640Γ—640, no crop - Quick
        - **Base**: 1024Γ—1024, no crop - Standard
        - **Large**: 1280Γ—1280, no crop - Highest quality
        
        ### Tasks
        - **Markdown**: Convert document to structured markdown (grounding βœ…)
        - **Free OCR**: Simple text extraction
        - **Locate**: Find specific things in image (grounding βœ…)
        - **Describe**: General image description
        - **Custom**: Your own prompt (add `<|grounding|>` for boxes)
        """)
    
    file_in.change(load_image, [file_in], [input_img])
    task.change(toggle_prompt, [task], [prompt])
    
    def run(image, file_path, mode, task, custom_prompt):
        if image is not None:
            return process_image(image, mode, task, custom_prompt)
        if file_path:
            return process_file(file_path, mode, task, custom_prompt)
        return "Error uploading file or image", "", "", None, []

    btn.click(run, [input_img, file_in, mode, task, prompt],
              [text_out, md_out, raw_out, img_out, gallery])

if __name__ == "__main__":
    demo.queue(max_size=20).launch()