File size: 2,915 Bytes
4e00df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import tempfile
from io import BytesIO
import time
import openai
import streamlit as st
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from utils import compute_sha1_from_content
from langchain.schema import Document
from stats import add_usage



# Create a function to transcribe audio using Whisper
def _transcribe_audio(api_key, audio_file, stats_db):
    openai.api_key = api_key
    transcript = ""
    
    with BytesIO(audio_file.read()) as audio_bytes:
        # Get the extension of the uploaded file
        file_extension = os.path.splitext(audio_file.name)[-1]
        
        # Create a temporary file with the uploaded audio data and the correct extension
        with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as temp_audio_file:
            temp_audio_file.write(audio_bytes.read())
            temp_audio_file.seek(0)  # Move the file pointer to the beginning of the file
            
            # Transcribe the temporary audio file
            if st.secrets.self_hosted == "false":
                    add_usage(stats_db, "embedding", "audio", metadata={"file_name": audio_file.name,"file_type": file_extension})
            
            transcript = openai.Audio.translate("whisper-1", temp_audio_file)

    return transcript

def process_audio(vector_store, file_name, stats_db):
    if st.secrets.self_hosted == "false":
        if file_name.size > 10000000:
            st.error("File size is too large. Please upload a file smaller than 1MB.")
            return
    file_sha = ""
    dateshort = time.strftime("%Y%m%d-%H%M%S")
    file_meta_name = f"audiotranscript_{dateshort}.txt"
    openai_api_key = st.secrets["openai_api_key"]
    transcript = _transcribe_audio(openai_api_key, file_name, stats_db)
    file_sha = compute_sha1_from_content(transcript.text.encode("utf-8"))
    ## file size computed from transcript
    file_size = len(transcript.text.encode("utf-8"))


    ## Load chunk size and overlap from sidebar
    chunk_size = st.session_state['chunk_size']
    chunk_overlap = st.session_state['chunk_overlap']

    text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    texts = text_splitter.split_text(transcript.text)

    docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha,"file_size": file_size, "file_name": file_meta_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts]

    if st.secrets.self_hosted == "false":
        add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap})
    vector_store.add_documents(docs_with_metadata)
    return vector_store