Spaces:
Runtime error
Runtime error
File size: 10,579 Bytes
b3640b9 2a10b61 b3640b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import numpy as np
import torch
from tqdm import tqdm
import math, random
#from sklearn.cluster import KMeans, kmeans_plusplus, MeanShift, estimate_bandwidth
def tensor_kmeans_sklearn(data_vecs, n_clusters=7, metric='euclidean', need_layer_masks=False, max_iters=20):
N,C,H,W = data_vecs.shape
assert N == 1, 'only support singe image tensor'
## (1,C,H,W) -> (HW,C)
data_vecs = data_vecs.permute(0,2,3,1).view(-1,C)
## convert tensor to array
data_vecs_np = data_vecs.squeeze().detach().to("cpu").numpy()
km = KMeans(n_clusters=n_clusters, init='k-means++', n_init=10, max_iter=300)
pred = km.fit_predict(data_vecs_np)
cluster_ids_x = torch.from_numpy(km.labels_).to(data_vecs.device)
id_maps = cluster_ids_x.reshape(1,1,H,W).long()
if need_layer_masks:
one_hot_labels = F.one_hot(id_maps.squeeze(1), num_classes=n_clusters).float()
cluster_mask = one_hot_labels.permute(0,3,1,2)
return cluster_mask
return id_maps
def tensor_kmeans_pytorch(data_vecs, n_clusters=7, metric='euclidean', need_layer_masks=False, max_iters=20):
N,C,H,W = data_vecs.shape
assert N == 1, 'only support singe image tensor'
## (1,C,H,W) -> (HW,C)
data_vecs = data_vecs.permute(0,2,3,1).view(-1,C)
## cosine | euclidean
#cluster_ids_x, cluster_centers = kmeans(X=data_vecs, num_clusters=n_clusters, distance=metric, device=data_vecs.device)
cluster_ids_x, cluster_centers = kmeans(X=data_vecs, num_clusters=n_clusters, distance=metric,\
tqdm_flag=False, iter_limit=max_iters, device=data_vecs.device)
id_maps = cluster_ids_x.reshape(1,1,H,W)
if need_layer_masks:
one_hot_labels = F.one_hot(id_maps.squeeze(1), num_classes=n_clusters).float()
cluster_mask = one_hot_labels.permute(0,3,1,2)
return cluster_mask
return id_maps
def batch_kmeans_pytorch(data_vecs, n_clusters=7, metric='euclidean', use_sklearn_kmeans=False):
N,C,H,W = data_vecs.shape
sample_list = []
for idx in range(N):
if use_sklearn_kmeans:
cluster_mask = tensor_kmeans_sklearn(data_vecs[idx:idx+1,:,:,:], n_clusters, metric, True)
else:
cluster_mask = tensor_kmeans_pytorch(data_vecs[idx:idx+1,:,:,:], n_clusters, metric, True)
sample_list.append(cluster_mask)
return torch.cat(sample_list, dim=0)
def get_centroid_candidates(data_vecs, n_clusters=7, metric='euclidean', max_iters=20):
N,C,H,W = data_vecs.shape
data_vecs = data_vecs.permute(0,2,3,1).view(-1,C)
cluster_ids_x, cluster_centers = kmeans(X=data_vecs, num_clusters=n_clusters, distance=metric,\
tqdm_flag=False, iter_limit=max_iters, device=data_vecs.device)
return cluster_centers
def find_distinctive_elements(data_tensor, n_clusters=7, topk=3, metric='euclidean'):
N,C,H,W = data_tensor.shape
centroid_list = []
for idx in range(N):
cluster_centers = get_centroid_candidates(data_tensor[idx:idx+1,:,:,:], n_clusters, metric)
centroid_list.append(cluster_centers)
batch_centroids = torch.stack(centroid_list, dim=0)
data_vecs = data_tensor.flatten(2)
## distance matrix: (N,K,HW) = (N,K,C) x (N,C,HW)
AtB = torch.matmul(batch_centroids, data_vecs)
AtA = torch.matmul(batch_centroids, batch_centroids.permute(0,2,1))
BtB = torch.matmul(data_vecs.permute(0,2,1), data_vecs)
diag_A = torch.diagonal(AtA, dim1=-2, dim2=-1)
diag_B = torch.diagonal(BtB, dim1=-2, dim2=-1)
A2 = diag_A.unsqueeze(2).repeat(1,1,H*W)
B2 = diag_B.unsqueeze(1).repeat(1,n_clusters,1)
distance_map = A2 - 2*AtB + B2
values, indices = distance_map.topk(topk, dim=2, largest=False, sorted=True)
cluster_mask = torch.where(distance_map <= values[:,:,topk-1:], torch.ones_like(distance_map), torch.zeros_like(distance_map))
cluster_mask = cluster_mask.view(N,n_clusters,H,W)
return cluster_mask
##---------------------------------------------------------------------------------
'''
resource from github: https://github.com/subhadarship/kmeans_pytorch
'''
##---------------------------------------------------------------------------------
def initialize(X, num_clusters):
"""
initialize cluster centers
:param X: (torch.tensor) matrix
:param num_clusters: (int) number of clusters
:return: (np.array) initial state
"""
np.random.seed(1)
num_samples = len(X)
indices = np.random.choice(num_samples, num_clusters, replace=False)
initial_state = X[indices]
return initial_state
def kmeans(
X,
num_clusters,
distance='euclidean',
cluster_centers=[],
tol=1e-4,
tqdm_flag=True,
iter_limit=0,
device=torch.device('cpu'),
gamma_for_soft_dtw=0.001
):
"""
perform kmeans
:param X: (torch.tensor) matrix
:param num_clusters: (int) number of clusters
:param distance: (str) distance [options: 'euclidean', 'cosine'] [default: 'euclidean']
:param tol: (float) threshold [default: 0.0001]
:param device: (torch.device) device [default: cpu]
:param tqdm_flag: Allows to turn logs on and off
:param iter_limit: hard limit for max number of iterations
:param gamma_for_soft_dtw: approaches to (hard) DTW as gamma -> 0
:return: (torch.tensor, torch.tensor) cluster ids, cluster centers
"""
if tqdm_flag:
print(f'running k-means on {device}..')
if distance == 'euclidean':
pairwise_distance_function = partial(pairwise_distance, device=device, tqdm_flag=tqdm_flag)
elif distance == 'cosine':
pairwise_distance_function = partial(pairwise_cosine, device=device)
else:
raise NotImplementedError
# convert to float
X = X.float()
# transfer to device
X = X.to(device)
# initialize
if type(cluster_centers) == list: # ToDo: make this less annoyingly weird
initial_state = initialize(X, num_clusters)
else:
if tqdm_flag:
print('resuming')
# find data point closest to the initial cluster center
initial_state = cluster_centers
dis = pairwise_distance_function(X, initial_state)
choice_points = torch.argmin(dis, dim=0)
initial_state = X[choice_points]
initial_state = initial_state.to(device)
iteration = 0
if tqdm_flag:
tqdm_meter = tqdm(desc='[running kmeans]')
while True:
dis = pairwise_distance_function(X, initial_state)
choice_cluster = torch.argmin(dis, dim=1)
initial_state_pre = initial_state.clone()
for index in range(num_clusters):
selected = torch.nonzero(choice_cluster == index).squeeze().to(device)
selected = torch.index_select(X, 0, selected)
# https://github.com/subhadarship/kmeans_pytorch/issues/16
if selected.shape[0] == 0:
selected = X[torch.randint(len(X), (1,))]
initial_state[index] = selected.mean(dim=0)
center_shift = torch.sum(
torch.sqrt(
torch.sum((initial_state - initial_state_pre) ** 2, dim=1)
))
# increment iteration
iteration = iteration + 1
# update tqdm meter
if tqdm_flag:
tqdm_meter.set_postfix(
iteration=f'{iteration}',
center_shift=f'{center_shift ** 2:0.6f}',
tol=f'{tol:0.6f}'
)
tqdm_meter.update()
if center_shift ** 2 < tol:
break
if iter_limit != 0 and iteration >= iter_limit:
#print('hello, there!')
break
return choice_cluster.to(device), initial_state.to(device)
def kmeans_predict(
X,
cluster_centers,
distance='euclidean',
device=torch.device('cpu'),
gamma_for_soft_dtw=0.001,
tqdm_flag=True
):
"""
predict using cluster centers
:param X: (torch.tensor) matrix
:param cluster_centers: (torch.tensor) cluster centers
:param distance: (str) distance [options: 'euclidean', 'cosine'] [default: 'euclidean']
:param device: (torch.device) device [default: 'cpu']
:param gamma_for_soft_dtw: approaches to (hard) DTW as gamma -> 0
:return: (torch.tensor) cluster ids
"""
if tqdm_flag:
print(f'predicting on {device}..')
if distance == 'euclidean':
pairwise_distance_function = partial(pairwise_distance, device=device, tqdm_flag=tqdm_flag)
elif distance == 'cosine':
pairwise_distance_function = partial(pairwise_cosine, device=device)
elif distance == 'soft_dtw':
sdtw = SoftDTW(use_cuda=device.type == 'cuda', gamma=gamma_for_soft_dtw)
pairwise_distance_function = partial(pairwise_soft_dtw, sdtw=sdtw, device=device)
else:
raise NotImplementedError
# convert to float
X = X.float()
# transfer to device
X = X.to(device)
dis = pairwise_distance_function(X, cluster_centers)
choice_cluster = torch.argmin(dis, dim=1)
return choice_cluster.cpu()
def pairwise_distance(data1, data2, device=torch.device('cpu'), tqdm_flag=True):
if tqdm_flag:
print(f'device is :{device}')
# transfer to device
data1, data2 = data1.to(device), data2.to(device)
# N*1*M
A = data1.unsqueeze(dim=1)
# 1*N*M
B = data2.unsqueeze(dim=0)
dis = (A - B) ** 2.0
# return N*N matrix for pairwise distance
dis = dis.sum(dim=-1).squeeze()
return dis
def pairwise_cosine(data1, data2, device=torch.device('cpu')):
# transfer to device
data1, data2 = data1.to(device), data2.to(device)
# N*1*M
A = data1.unsqueeze(dim=1)
# 1*N*M
B = data2.unsqueeze(dim=0)
# normalize the points | [0.3, 0.4] -> [0.3/sqrt(0.09 + 0.16), 0.4/sqrt(0.09 + 0.16)] = [0.3/0.5, 0.4/0.5]
A_normalized = A / A.norm(dim=-1, keepdim=True)
B_normalized = B / B.norm(dim=-1, keepdim=True)
cosine = A_normalized * B_normalized
# return N*N matrix for pairwise distance
cosine_dis = 1 - cosine.sum(dim=-1).squeeze()
return cosine_dis |