Spaces:
Runtime error
Runtime error
File size: 6,921 Bytes
b3640b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from __future__ import division
from __future__ import print_function
import os, glob, shutil, math, json
from queue import Queue
from threading import Thread
from skimage.segmentation import mark_boundaries
import numpy as np
from PIL import Image
import cv2, torch
def get_gauss_kernel(size, sigma):
'''Function to mimic the 'fspecial' gaussian MATLAB function'''
x, y = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
g = np.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g/g.sum()
def batchGray2Colormap(gray_batch):
colormap = plt.get_cmap('viridis')
heatmap_batch = []
for i in range(gray_batch.shape[0]):
# quantize [-1,1] to {0,1}
gray_map = gray_batch[i, :, :, 0]
heatmap = (colormap(gray_map) * 2**16).astype(np.uint16)[:,:,:3]
heatmap_batch.append(heatmap/127.5-1.0)
return np.array(heatmap_batch)
class PlotterThread():
'''log tensorboard data in a background thread to save time'''
def __init__(self, writer):
self.writer = writer
self.task_queue = Queue(maxsize=0)
worker = Thread(target=self.do_work, args=(self.task_queue,))
worker.setDaemon(True)
worker.start()
def do_work(self, q):
while True:
content = q.get()
if content[-1] == 'image':
self.writer.add_image(*content[:-1])
elif content[-1] == 'scalar':
self.writer.add_scalar(*content[:-1])
else:
raise ValueError
q.task_done()
def add_data(self, name, value, step, data_type='scalar'):
self.task_queue.put([name, value, step, data_type])
def __len__(self):
return self.task_queue.qsize()
def save_images_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None):
N,H,W,C = img_batch.shape
if C == 3:
#! rgb color image
for i in range(N):
# [-1,1] >>> [0,255]
image = Image.fromarray((127.5*(img_batch[i,:,:,:]+1.)).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
elif C == 1:
#! single-channel gray image
for i in range(N):
# [-1,1] >>> [0,255]
image = Image.fromarray((127.5*(img_batch[i,:,:,0]+1.)).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*img_batch.shape[0]+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
else:
#! multi-channel: save each channel as a single image
for i in range(N):
# [-1,1] >>> [0,255]
for j in range(C):
image = Image.fromarray((127.5*(img_batch[i,:,:,j]+1.)).astype(np.uint8))
if batch_no == -1:
_, file_name = os.path.split(filename_list[i])
name_only, _ = os.path.os.path.splitext(file_name)
save_name = name_only + '_c%d.png' % j
else:
save_name = '%05d_c%d.png' % (batch_no*N+i, j)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
return None
def save_normLabs_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None):
N,H,W,C = img_batch.shape
if C != 3:
print('@Warning:the Lab images are NOT in 3 channels!')
return None
# denormalization: L: (L+1.0)*50.0 | a: a*110.0| b: b*110.0
img_batch[:,:,:,0] = img_batch[:,:,:,0] * 50.0 + 50.0
img_batch[:,:,:,1:3] = img_batch[:,:,:,1:3] * 110.0
#! convert into RGB color image
for i in range(N):
rgb_img = cv2.cvtColor(img_batch[i,:,:,:], cv2.COLOR_LAB2RGB)
image = Image.fromarray((rgb_img*255.0).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
return None
def save_markedSP_from_batch(img_batch, spix_batch, save_dir, filename_list, batch_no=-1, suffix=None):
N,H,W,C = img_batch.shape
#! img_batch: BGR nd-array (range:0~1)
#! map_batch: single-channel spixel map
#print('----------', img_batch.shape, spix_batch.shape)
for i in range(N):
norm_image = img_batch[i,:,:,:]*0.5+0.5
spixel_bd_image = mark_boundaries(norm_image, spix_batch[i,:,:,0].astype(int), color=(1,1,1))
#spixel_bd_image = cv2.cvtColor(spixel_bd_image, cv2.COLOR_BGR2RGB)
image = Image.fromarray((spixel_bd_image*255.0).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
return None
def get_filelist(data_dir):
file_list = glob.glob(os.path.join(data_dir, '*.*'))
file_list.sort()
return file_list
def collect_filenames(data_dir):
file_list = get_filelist(data_dir)
name_list = []
for file_path in file_list:
_, file_name = os.path.split(file_path)
name_list.append(file_name)
name_list.sort()
return name_list
def exists_or_mkdir(path, need_remove=False):
if not os.path.exists(path):
os.makedirs(path)
elif need_remove:
shutil.rmtree(path)
os.makedirs(path)
return None
def save_list(save_path, data_list, append_mode=False):
n = len(data_list)
if append_mode:
with open(save_path, 'a') as f:
f.writelines([str(data_list[i]) + '\n' for i in range(n-1,n)])
else:
with open(save_path, 'w') as f:
f.writelines([str(data_list[i]) + '\n' for i in range(n)])
return None
def save_dict(save_path, dict):
json.dumps(dict, open(save_path,"w"))
return None
if __name__ == '__main__':
data_dir = '../PolyNet/PolyNet/cache/'
#visualizeLossCurves(data_dir)
clbar = GamutIndex()
ab, ab_gamut_mask = clbar._get_gamut_mask()
ab2q = clbar._get_ab_to_q(ab_gamut_mask)
q2ab = clbar._get_q_to_ab(ab, ab_gamut_mask)
maps = ab_gamut_mask*255.0
image = Image.fromarray(maps.astype(np.uint8))
image.save('gamut.png', 'PNG')
print(ab2q.shape)
print(q2ab.shape)
print('label range:', np.min(ab2q), np.max(ab2q)) |