File size: 6,364 Bytes
34501b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import sys
import os
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.abspath(os.path.join(THIS_DIR, os.pardir))
sys.path.append(ROOT_DIR)
import glob
import torch
print(torch.cuda.is_available())
from training.datasets import create_dataset, create_dataloader
print("HIII")
from models import create_model
import pytorch_lightning as pl
from training.options.train_options import TrainOptions
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
print("HIII")
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.plugins.training_type.deepspeed import DeepSpeedPlugin
from pytorch_lightning.callbacks import ModelCheckpoint


from training.utils import get_latest_checkpoint
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
print(rank)


if __name__ == '__main__':
    pl.seed_everything(69420)
    opt = TrainOptions().parse()
    # Path(opt.checkpoints_dir+"/"+opt.experiment_name).mkdir(parents=True,exist_ok=True)
    if rank == 0:
        if not os.path.exists(opt.checkpoints_dir+"/"+opt.experiment_name):
            os.makedirs(opt.checkpoints_dir+"/"+opt.experiment_name)
    print("loaded options")
    print(opt.experiment_name)
    model = create_model(opt)
    print("loaded model")
    if "tpu_cores" in vars(opt) and opt.tpu_cores is not None and opt.tpu_cores > 0:
        plugins = None
    elif opt.plugins is None:
        print("DDPPlugin")
        plugins = DDPPlugin(find_unused_parameters=opt.find_unused_parameters, num_nodes=opt.num_nodes)
    elif opt.plugins == "deepspeed":
        deepspeed_config = {
                "zero_optimization": {
                    "stage": 2,
                    "cpu_offload":False,
                },
                #'train_batch_size': opt.batch_size,
                'gradient_clipping': opt.gradient_clip_val,
                'fp16': {
                    'enabled': opt.precision == 16,
                    'loss_scale': 0,
                    'initial_scale_power': 15,
                },
            }
        plugins = DeepSpeedPlugin(config=deepspeed_config)
    else:
        #ddpplugin = DDPPlugin(find_unused_parameters=opt.find_unused_parameters, num_nodes=opt.num_nodes)
        #plugins = [ddpplugin, opt.plugins]
        plugins = opt.plugins

    ##Datasets and dataloaders
    train_dataset = create_dataset(opt)
    train_dataset.setup()
    train_dataloader = create_dataloader(train_dataset)
    if opt.do_validation:
        val_dataset = create_dataset(opt, split="val")
        val_dataset.setup()
        val_dataloader = create_dataloader(val_dataset, split="val")
    if opt.do_testing:
        test_dataset = create_dataset(opt, split="test")
        test_dataset.setup()
        test_dataloader = create_dataloader(test_dataset, split="test")
    print('#training sequences = {:d}'.format(len(train_dataset)))

    default_save_path = opt.checkpoints_dir+"/"+opt.experiment_name

    logger = TensorBoardLogger(opt.checkpoints_dir, name=opt.experiment_name, default_hp_metric=False)
    checkpoint_callback = ModelCheckpoint(
            #####
            monitor = 'loss',
            save_top_k = 5,
            every_n_train_steps = 1000,
            # every_n_train_steps = 10,
    )
    callbacks = [checkpoint_callback]
    args = Trainer.parse_argparser(opt)

    if opt.continue_train:
        print("CONTINUE TRAIN")
        #TODO: add option to override saved hparams when doing continue_train with an hparams file, or even make that default
        logs_path = default_save_path
        latest_file = get_latest_checkpoint(logs_path)
        print(latest_file)
        if opt.load_weights_only:
            state_dict = torch.load(latest_file)
            state_dict = state_dict['state_dict']
            load_strict = True
            if opt.only_load_in_state_dict != "":
                state_dict = {k:v for k,v in state_dict.items() if (opt.only_load_in_state_dict in k)}
                load_strict = False
            if opt.ignore_in_state_dict != "":
                state_dict = {k:v for k,v in state_dict.items() if not (opt.ignore_in_state_dict in k)}
                load_strict = False
            model.load_state_dict(state_dict, strict=load_strict)
            trainer = Trainer.from_argparse_args(args, logger=logger, default_root_dir=default_save_path, plugins=plugins, callbacks=callbacks)
        else:
            trainer = Trainer.from_argparse_args(args, logger=logger, default_root_dir=default_save_path, resume_from_checkpoint=latest_file, plugins=plugins, callbacks=callbacks)
    else:
        trainer = Trainer.from_argparse_args(args, logger=logger, default_root_dir=default_save_path, plugins=plugins, callbacks=callbacks)

    #Tuning
    if opt.do_tuning:
        if opt.do_validation:
            trainer.tune(model, train_dataloader, val_dataloader)
        else:
            trainer.tune(model, train_dataloader)

    #Training
    if not opt.skip_training:
        if opt.do_validation:
            trainer.fit(model, train_dataloader, val_dataloader)
        else:
            trainer.fit(model, train_dataloader)

    #evaluating on test set
    if opt.do_testing:
        print("TESTING")
        logs_path = default_save_path
        latest_file = get_latest_checkpoint(logs_path)
        print(latest_file)
        state_dict = torch.load(latest_file)
        model.load_state_dict(state_dict['state_dict'])
        trainer.test(model, test_dataloader)

        # trainer = Trainer(logger=logger)
        # # trainer.test(model, train_dataloader)
        # logs_path = default_save_path
        # checkpoint_subdirs = [(d,int(d.split("_")[1])) for d in os.listdir(logs_path) if os.path.isdir(logs_path+"/"+d)]
        # checkpoint_subdirs = sorted(checkpoint_subdirs,key=lambda t: t[1])
        # checkpoint_path=logs_path+"/"+checkpoint_subdirs[-1][0]+"/checkpoints/"
        # list_of_files = glob.glob(checkpoint_path+'/*') # * means all if need specific format then *.csv
        # latest_file = max(list_of_files, key=os.path.getctime)
        # print(latest_file)
        # trainer.test(model, test_dataloaders=test_dataloader, ckpt_path=latest_file)
        # trainer.test(test_dataloaders=test_dataloader, ckpt_path=latest_file)
        # trainer.test(test_dataloaders=test_dataloader)