Spaces:
Runtime error
Runtime error
File size: 17,547 Bytes
34501b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from pathlib import Path
from itertools import tee
import numpy as np
import torch
from .base_dataset import BaseDataset
def find_example_idx(n, cum_sums, idx = 0):
N = len(cum_sums)
search_i = N//2 - 1
if N > 1:
if n < cum_sums[search_i]:
return find_example_idx(n, cum_sums[:search_i+1], idx=idx)
else:
return find_example_idx(n, cum_sums[search_i+1:], idx=idx+search_i+1)
else:
if n < cum_sums[0]:
return idx
else:
return idx + 1
class MultimodalDataset(BaseDataset):
def __init__(self, opt, split="train"):
super().__init__()
self.opt = opt
data_path = Path(opt.data_dir)
if not data_path.is_dir():
raise ValueError('Invalid directory:'+opt.data_dir)
print(opt.base_filenames_file)
if split == "train":
temp_base_filenames = [x[:-1] for x in open(data_path.joinpath(opt.base_filenames_file), "r").readlines()]
else:
temp_base_filenames = [x[:-1] for x in open(data_path.joinpath("base_filenames_"+split+".txt"), "r").readlines()]
if opt.num_train_samples > 0:
temp_base_filenames = np.random.choice(temp_base_filenames, size=opt.num_train_samples, replace=False)
self.base_filenames = []
input_mods = self.opt.input_modalities.split(",")
output_mods = self.opt.output_modalities.split(",")
self.input_lengths = input_lengths = [int(x) for x in str(self.opt.input_lengths).split(",")]
self.output_lengths = output_lengths = [int(x) for x in str(self.opt.output_lengths).split(",")]
self.output_time_offsets = output_time_offsets = [int(x) for x in str(self.opt.output_time_offsets).split(",")]
self.input_time_offsets = input_time_offsets = [int(x) for x in str(self.opt.input_time_offsets).split(",")]
if self.opt.input_types is None:
input_types = ["c" for inp in input_mods]
else:
input_types = self.opt.input_types.split(",")
if self.opt.input_fix_length_types is None:
input_fix_length_types = ["end" for inp in input_mods]
else:
input_fix_length_types = self.opt.input_fix_length_types.split(",")
if self.opt.output_fix_length_types is None:
output_fix_length_types = ["end" for inp in input_mods]
else:
output_fix_length_types = self.opt.output_fix_length_types.split(",")
fix_length_types_dict = {mod:output_fix_length_types[i] for i,mod in enumerate(output_mods)}
fix_length_types_dict.update({mod:input_fix_length_types[i] for i,mod in enumerate(input_mods)})
assert len(input_types) == len(input_mods)
assert len(input_fix_length_types) == len(input_mods)
assert len(output_fix_length_types) == len(input_mods)
self.input_types = input_types
self.input_fix_length_types = input_fix_length_types
self.output_fix_length_types = output_fix_length_types
if self.opt.input_num_tokens is None:
self.input_num_tokens = [0 for inp in input_mods]
else:
self.input_num_tokens = [int(x) for x in self.opt.input_num_tokens.split(",")]
if self.opt.output_num_tokens is None:
self.output_num_tokens = [0 for inp in output_mods]
else:
self.output_num_tokens = [int(x) for x in self.opt.output_num_tokens.split(",")]
if len(output_time_offsets) < len(output_mods):
if len(output_time_offsets) == 1:
self.output_time_offsets = output_time_offsets = output_time_offsets*len(output_mods)
else:
raise Exception("number of output_time_offsets doesnt match number of output_mods")
if len(input_time_offsets) < len(input_mods):
if len(input_time_offsets) == 1:
self.input_time_offsets = input_time_offsets = input_time_offsets*len(input_mods)
else:
raise Exception("number of input_time_offsets doesnt match number of input_mods")
self.features = {mod:{} for mod in input_mods+output_mods}
#self.input_features = {input_mod:{} for input_mod in input_mods}
#self.output_features = {output_mod:{} for output_mod in output_mods}
if opt.fix_lengths:
self.features_filenames = {mod:{} for mod in input_mods+output_mods}
#self.input_features_filenames = {input_mod:{} for input_mod in input_mods}
#self.output_features_filenames = {input_mod:{} for input_mod in input_mods}
min_length = max(max(np.array(input_lengths) + np.array(input_time_offsets)), max(np.array(output_time_offsets) + np.array(output_lengths)) ) - min(0,min(output_time_offsets))
print(min_length)
fix_lengths = opt.fix_lengths
self.total_frames = 0
self.frame_cum_sums = []
#Get the list of files containing features (in numpy format for now), and populate the dictionaries of input and output features (separated by modality)
for base_filename in temp_base_filenames:
file_too_short = False
first_length=True
for i, mod in enumerate(input_mods):
feature_file = data_path.joinpath(base_filename+"."+mod+".npy")
if self.input_fix_length_types[i] == "single": continue
#print(feature_file)
try:
features = np.load(feature_file)
length = features.shape[0]
#print(features.shape)
#print(length)
if not fix_lengths:
if first_length:
length_0 = length
first_length=False
else:
assert length == length_0
if length < min_length:
# print("Smol sequence "+base_filename+"."+mod+"; ignoring..")
file_too_short = True
break
except FileNotFoundError:
raise Exception("An unprocessed input feature found "+base_filename+"."+mod+"; need to run preprocessing script before starting to train with them")
if file_too_short: continue
first_length=True
for i, mod in enumerate(output_mods):
feature_file = data_path.joinpath(base_filename+"."+mod+".npy")
if self.output_fix_length_types[i] == "single": continue
try:
features = np.load(feature_file)
length = features.shape[0]
if not fix_lengths:
if first_length:
length_0 = length
first_length=False
else:
assert length == length_0
if length < min_length:
# print("Smol sequence "+base_filename+"."+mod+"; ignoring..")
file_too_short = True
break
except FileNotFoundError:
raise Exception("An unprocessed output feature found "+base_filename+"."+mod+"; need to run preprocessing script before starting to train with them")
if file_too_short: continue
for mod in input_mods+output_mods:
feature_file = data_path.joinpath(base_filename+"."+mod+".npy")
features = np.load(feature_file)
self.features[mod][base_filename] = features
if fix_lengths:
self.features_filenames[mod][base_filename] = feature_file
if fix_lengths:
shortest_length = 99999999999
first_match = True
for mod in input_mods+output_mods:
if fix_length_types_dict[mod] == "single": continue
length = self.features[mod][base_filename].shape[0]
if length < shortest_length:
#print(np.abs(length-shortest_length))
if first_match:
first_match = False
else:
if np.abs(length-shortest_length) > 2:
print("sequence length difference")
print(np.abs(length-shortest_length))
print(base_filename)
#assert np.abs(length-shortest_length) <= 2
shortest_length = length
for i,mod in enumerate(input_mods):
if self.input_fix_length_types[i] == "end":
np.save(self.features_filenames[mod][base_filename],self.features[mod][base_filename][:shortest_length])
elif self.input_fix_length_types[i] == "beg":
np.save(self.features_filenames[mod][base_filename],self.features[mod][base_filename][shortest_length:])
elif self.input_fix_length_types[i] == "single":
assert self.features[mod][base_filename].shape[0] == 1
else:
raise NotImplementedError("Haven't implemented input_fix_length_type "+self.input_fix_length_type[i])
for i,mod in enumerate(output_mods):
if mod not in input_mods:
if self.output_fix_length_types[i] == "end":
np.save(self.features_filenames[mod][base_filename],self.features[mod][base_filename][:shortest_length])
elif self.output_fix_length_types[i] == "beg":
np.save(self.features_filenames[mod][base_filename],self.features[mod][base_filename][shortest_length:])
elif self.output_fix_length_types[i] == "single":
assert self.features[mod][base_filename].shape[0] == 1
else:
raise NotImplementedError("Haven't implemented output_fix_length_type "+self.output_fix_length_type[i])
for mod in input_mods+output_mods:
self.features[mod][base_filename] = np.load(self.features_filenames[mod][base_filename])
length = self.features[mod][base_filename].shape[0]
if i == 0:
length_0 = length
else:
assert length == length_0
#TODO: implement this!
## we pad the song features with zeros to imitate during training what happens during generation
#x = [np.concatenate((np.zeros(( xx.shape[0],max(0,max(output_time_offsets)) )),xx),0) for xx in x]
## we also pad at the end to allow generation to be of the same length of sequence, by padding an amount corresponding to time_offset
#x = [np.concatenate((xx,np.zeros(( xx.shape[0],max(0,max(input_lengths)+max(input_time_offsets)-(min(output_time_offsets)+min(output_lengths)-1)) ))),0) for xx in x]
found_full_seq = False
for i,mod in enumerate(input_mods):
if self.input_fix_length_types[i] != "single":
sequence_length = self.features[mod][base_filename].shape[0]
found_full_seq = True
if not found_full_seq:
sequence_length = 1
possible_init_frames = sequence_length-max(max(input_lengths)+max(input_time_offsets),max(output_time_offsets)+max(output_lengths))+1
self.total_frames += possible_init_frames
self.frame_cum_sums.append(self.total_frames)
self.base_filenames.append(base_filename)
print("sequences added: "+str(len(self.base_filenames)))
assert len(self.base_filenames)>0, "List of files for training cannot be empty"
for mod in input_mods+output_mods:
assert len(self.features[mod].values()) == len(self.base_filenames)
@staticmethod
def modify_commandline_options(parser, is_train):
parser.add_argument('--sampling_rate', default=44100, type=float)
parser.add_argument('--dins', default=None, help="input dimension for continuous inputs. Embedding dimension for discrete inputs")
parser.add_argument('--douts', default=None)
parser.add_argument('--input_modalities', default='mp3_mel_100')
parser.add_argument('--output_modalities', default='mp3_mel_100')
parser.add_argument('--input_lengths', help='input sequence length')
parser.add_argument('--input_num_tokens', help='num_tokens. use 0 for continuous inputs')
parser.add_argument('--output_num_tokens', help='num_tokens. use 0 for continuous inputs')
parser.add_argument('--input_types', default=None, help='Comma-separated list of input types: d for discrete, c for continuous. E.g. d,c,c. Assumes continuous if not specified')
parser.add_argument('--input_fix_length_types', default=None, help='Comma-separated list of approaches to fix length: end for cut end, beg for cut beginning, single for single-element sequence (e.g. sequence-level label). E.g. single,end,end. Assumes cut end if not specified')
parser.add_argument('--output_fix_length_types', default=None, help='Comma-separated list of approaches to fix length: end for cut end, beg for cut beginning, single for single-element sequence (e.g. sequence-level label). E.g. single,end,end. Assumes cut end if not specified')
parser.add_argument('--output_lengths', help='output sequence length')
parser.add_argument('--output_time_offsets', default="1", help='time shift between the last read input, and the output predicted. The default value of 1 corresponds to predicting the next output')
parser.add_argument('--input_time_offsets', default="0", help='time shift between the beginning of each modality and the first modality')
parser.add_argument('--max_token_seq_len', type=int, default=1024)
parser.add_argument('--fix_lengths', action='store_true', help='fix unmatching length of sequences')
parser.add_argument('--num_train_samples', type=int, default=0, help='if 0 then use all of them')
return parser
def name(self):
return "MultiModalDataset"
def process_input(self,j,xx,index):
input_lengths = self.input_lengths
output_lengths = self.output_lengths
output_time_offsets = self.output_time_offsets
input_time_offsets = self.input_time_offsets
if self.input_fix_length_types[j]!="single":
return torch.tensor(xx[index+input_time_offsets[j]:index+input_time_offsets[j]+input_lengths[j]]).float()
else:
return torch.tensor(xx).long().unsqueeze(1)
def process_output(self,j,yy,index):
input_lengths = self.input_lengths
output_lengths = self.output_lengths
output_time_offsets = self.output_time_offsets
input_time_offsets = self.input_time_offsets
if self.output_fix_length_types[j]!="single":
return torch.tensor(yy[index+output_time_offsets[j]:index+output_time_offsets[j]+output_lengths[j]]).float()
else:
return torch.tensor(yy).long().unsqueeze(1)
def __getitem__(self, item):
idx = find_example_idx(item, self.frame_cum_sums)
base_filename = self.base_filenames[idx]
input_lengths = self.input_lengths
output_lengths = self.output_lengths
output_time_offsets = self.output_time_offsets
input_time_offsets = self.input_time_offsets
input_mods = self.opt.input_modalities.split(",")
output_mods = self.opt.output_modalities.split(",")
x = [self.features[mod][base_filename] for mod in input_mods]
y = [self.features[mod][base_filename] for mod in output_mods]
#for i, mod in enumerate(input_mods):
# input_feature = self.features[mod][base_filename]
# x.append(input_feature)
#for i, mod in enumerate(output_mods):
# output_feature = self.features[mod][base_filename]
# y.append(output_feature)
# normalization of individual features for the sequence
# not doing this any more as we are normalizing over all examples now
#x = [(xx-np.mean(xx,0,keepdims=True))/(np.std(xx,0,keepdims=True)+1e-5) for xx in x]
#y = [(yy-np.mean(yy,0,keepdims=True))/(np.std(yy,0,keepdims=True)+1e-5) for yy in y]
if idx > 0: index = item - self.frame_cum_sums[idx-1]
else: index = item
## CONSTRUCT TENSOR OF INPUT FEATURES ##
input_windows = [self.process_input(j,xx,index) for j,xx in enumerate(x)]
## CONSTRUCT TENSOR OF OUTPUT FEATURES ##
output_windows = [self.process_output(j,yy,index) for j,yy in enumerate(y)]
# print(input_windows[i])
return_dict = {}
for i,mod in enumerate(input_mods):
return_dict["in_"+mod] = input_windows[i]
for i,mod in enumerate(output_mods):
return_dict["out_"+mod] = output_windows[i]
return return_dict
def __len__(self):
# return len(self.base_filenames)
return self.total_frames
# return 2
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
|