Spaces:
Runtime error
Runtime error
File size: 17,707 Bytes
bc32eea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import torch
from .transformer import BasicTransformerModel
from models import BaseModel
from models.flowplusplus import FlowPlusPlus
import ast
from torch import nn
from .util.generation import autoregressive_generation_multimodal
from .moglow.models import Glow
#TODO: refactor a whole bunch of stuff
class TransglowerModel(BaseModel):
def __init__(self, opt):
super().__init__(opt)
input_mods = self.input_mods
output_mods = self.output_mods
dins = self.dins
douts = self.douts
input_seq_lens = self.input_seq_lens
self.input_mod_nets = []
self.input_mod_funcs = []
self.output_mod_nets = []
self.output_mod_mean_nets = []
self.output_mod_funcs = []
self.output_mod_glows = []
self.module_names = []
for i, mod in enumerate(input_mods):
net = BasicTransformerModel(opt.dhid, dins[i], opt.nhead, opt.dhid, 2, opt.dropout, self.device, use_pos_emb=True, input_length=input_seq_lens[i]).to(self.device)
name = "_input_"+mod
setattr(self,"net"+name, net)
self.input_mod_nets.append(net)
# self.input_mod_funcs.append(func)
self.module_names.append(name)
def func1(x):
return self.input_mod_nets[0].forward(x)
#func1 = torch.vmap(func1)
def func2(x):
return self.input_mod_nets[1].forward(x)
#func2 = torch.vmap(func2)
self.input_mod_funcs = [func1, func2]
# should only be one output_mod
for i, mod in enumerate(output_mods):
net = BasicTransformerModel(opt.dhid, opt.dhid, opt.nhead, opt.dhid, opt.nlayers, opt.dropout, self.device, use_pos_emb=opt.use_pos_emb_output, input_length=sum(input_seq_lens)).to(self.device)
name = "_output_"+mod
setattr(self, "net"+name, net)
self.output_mod_nets.append(net)
self.module_names.append(name)
if self.opt.residual:
def func3(x):
return self.output_mod_nets[i].forward(x)
else:
def func3(x):
return self.output_mod_nets[i].forward(x)[:self.conditioning_seq_lens[i]]
#func3 = torch.vmap(func3)
self.output_mod_funcs.append(func3)
if opt.residual:
net = nn.Linear(opt.dhid,douts[i])
name="_output_mean_encoder"
setattr(self, "net"+name, net)
self.output_mod_mean_nets.append(net)
cond_dim = opt.dhid
output_dim = douts[i]
glow = Glow(output_dim, cond_dim, self.opt)
name = "_output_glow_"+mod
setattr(self, "net"+name, glow)
self.output_mod_glows.append(glow)
self.inputs = []
self.targets = []
self.mean_loss = nn.MSELoss()
self.mse_loss = 0
self.nll_loss = 0
def name(self):
return "Transglower"
def parse_base_arguments(self):
super().parse_base_arguments()
self.input_seq_lens = [int(x) for x in str(self.opt.input_seq_lens).split(",")]
self.output_seq_lens = [int(x) for x in str(self.opt.output_seq_lens).split(",")]
if self.opt.phase == "inference":
self.input_lengths = [int(x) for x in self.opt.input_seq_lens.split(",")]
self.output_lengths = [int(x) for x in self.opt.output_seq_lens.split(",")]
else:
self.input_lengths = [int(x) for x in self.opt.input_lengths.split(",")]
self.output_lengths = [int(x) for x in self.opt.output_lengths.split(",")]
if self.opt.conditioning_seq_lens is not None:
self.conditioning_seq_lens = [int(x) for x in str(self.opt.conditioning_seq_lens).split(",")]
else:
self.conditioning_seq_lens = [1 for x in self.opt.output_lengths.split(",")]
if len(self.output_time_offsets) < len(self.output_mods):
if len(self.output_time_offsets) == 1:
self.output_time_offsets = self.output_time_offsets*len(self.output_mods)
else:
raise Exception("number of output_time_offsets doesnt match number of output_mods")
if len(self.input_time_offsets) < len(self.input_mods):
if len(input_time_offsets) == 1:
self.input_time_offsets = self.input_time_offsets*len(self.input_mods)
else:
raise Exception("number of input_time_offsets doesnt match number of input_mods")
@staticmethod
def modify_commandline_options(parser, opt):
parser.add_argument('--dhid', type=int, default=512)
parser.add_argument('--dhid_flow', type=int, default=512)
parser.add_argument('--conditioning_seq_lens', type=str, default=None, help="the number of outputs of the conditioning transformers to feed (meaning the number of elements along the sequence dimension)")
parser.add_argument('--input_seq_lens', type=str, default="10,11")
parser.add_argument('--output_seq_lens', type=str, default="1")
parser.add_argument('--glow_K', type=int, default=16)
parser.add_argument('--actnorm_scale', type=float, default=1.0)
parser.add_argument('--flow_permutation', type=str, default="invconv")
parser.add_argument('--flow_dist', type=str, default="normal")
parser.add_argument('--flow_dist_param', type=int, default=50)
parser.add_argument('--flow_coupling', type=str, default="affine")
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--network_model', type=str, default="LSTM")
parser.add_argument('--LU_decomposed', action='store_true')
parser.add_argument('--nlayers', type=int, default=6)
parser.add_argument('--nhead', type=int, default=8)
parser.add_argument('--num_heads_flow', type=int, default=8)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--scales', type=str, default="[[10,0]]")
parser.add_argument('--glow_norm_layer', type=str, default=None)
parser.add_argument('--glow_bn_momentum', type=float, default=0.1)
parser.add_argument('--num_glow_coupling_blocks', type=int, default=10)
parser.add_argument('--num_mixture_components', type=int, default=0)
parser.add_argument('--glow_use_attn', action='store_true', help="whether to use the internal attention for the FlowPlusPLus model")
parser.add_argument('--use_transformer_nn', action='store_true', help="whether to use the internal attention for the FlowPlusPLus model")
parser.add_argument('--use_pos_emb_output', action='store_true', help="whether to use positional embeddings for output modality transformers")
parser.add_argument('--use_pos_emb_coupling', action='store_true', help="whether to use positional embeddings for the coupling layer transformers")
parser.add_argument('--cond_concat_dims', action='store_true', help="if set we concatenate along the channel dimension with with the x for the coupling layer; otherwise we concatenate along the sequence dimesion")
parser.add_argument('--residual', action='store_true', help="whether to use the flow to predict the residual around a determnisitic mean")
return parser
def forward(self, data):
# in lightning, forward defines the prediction/inference actions
# min_len = min(self.input_seq_lens)
for i,mod in enumerate(self.input_mods):
input_ = data[i]
input_ = input_.permute(1,2,0)
input_ = input_.permute(0,2,1)
input_ = self.concat_sequence(self.input_seq_lens[i], input_)
# input_ = input_.permute(0,2,1)
input_ = input_.permute(1,2,0,3) # L, T, B, C
# input_ = input_[:,:,:min_len]
# inputs_.append(input_)
data[i] = input_
latents = []
for i, mod in enumerate(self.input_mods):
# import pdb;pdb.set_trace()
# result = self.input_mod_funcs[i](data[i])
result = []
for inp in data[i]:
result.append(self.input_mod_funcs[i](inp))
result = torch.stack(result)
latents.append(result)
latent = torch.cat(latents,dim=1)
loss = 0
outputs = []
if self.opt.residual:
for i, mod in enumerate(self.output_mods):
#trans_output = self.output_mod_funcs[i](latent).permute(2,1,3,0)
trans_output = []
for lat in latent:
trans_output.append(self.output_mod_funcs[i](lat))
trans_output = torch.stack(trans_output)
latents = trans_output[:,:self.conditioning_seq_lens[i]].permute(2,1,3,0)
trans_predicted_mean_latents = trans_output[:,self.conditioning_seq_lens[i]:self.conditioning_seq_lens[i]+self.output_seq_lens[i]]
latents = latents.reshape(latents.shape[0], latents.shape[1] * latents.shape[2], latents.shape[3])
trans_predicted_mean_latents = trans_predicted_mean_latents.reshape(trans_predicted_mean_latents.shape[0], trans_predicted_mean_latents.shape[1] * trans_predicted_mean_latents.shape[2], trans_predicted_mean_latents.shape[3])
# predicted_mean = self.output_mod_mean_nets[i](trans_predicted_mean_latents).permute(1,2,0)
predicted_mean = self.output_mod_mean_nets[i](trans_predicted_mean_latents)
glow = self.output_mod_glows[i]
output = glow(x=None, cond=latents, reverse=True)
# import pdb;pdb.set_trace()
outputs.append(output.permute(0,2,1)+predicted_mean)
else:
for i, mod in enumerate(self.output_mods):
#trans_output = self.output_mod_funcs[i](latent).permute(2,1,3,0)
trans_output = []
for lat in latent:
trans_output.append(self.output_mod_funcs[i](lat))
trans_output = torch.stack(trans_output).permute(2,1,3,0)
trans_output = trans_output.reshape(trans_output.shape[0], trans_output.shape[1] * trans_output.shape[2], trans_output.shape[3])
glow = self.output_mod_glows[i]
output = glow(x=None, cond=trans_output, reverse=True)
outputs.append(output.permute(0,2,1))
return outputs
def on_test_start(self):
for i, mod in enumerate(self.output_mods):
self.output_mod_glows[i].init_lstm_hidden()
def on_train_start(self):
for i, mod in enumerate(self.output_mods):
self.output_mod_glows[i].init_lstm_hidden()
def on_test_batch_start(self, batch, batch_idx, dataloader_idx):
for i, mod in enumerate(self.output_mods):
self.output_mod_glows[i].init_lstm_hidden()
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
for i, mod in enumerate(self.output_mods):
self.output_mod_glows[i].init_lstm_hidden()
def concat_sequence(self, seqlen, data):
#NOTE: this could be done as preprocessing on the dataset to make it a bit more efficient, but we are only going to
# use this for baseline moglow, so I thought it wasn't worth it to put it there.
"""
Concatenates a sequence of features to one.
"""
nn,n_timesteps,n_feats = data.shape
L = n_timesteps-(seqlen-1)
# import pdb;pdb.set_trace()
inds = torch.zeros((L, seqlen), dtype=torch.long)
#create indices for the sequences we want
rng = torch.arange(0, n_timesteps, dtype=torch.long)
for ii in range(0,seqlen):
# print(rng[ii:(n_timesteps-(seqlen-ii-1))].shape)
# inds[:, ii] = torch.transpose(rng[ii:(n_timesteps-(seqlen-ii-1))], 0, 1)
inds[:, ii] = rng[ii:(n_timesteps-(seqlen-ii-1))]
#slice each sample into L sequences and store as new samples
cc=data[:,inds,:].clone()
#print ("cc: " + str(cc.shape))
#reshape all timesteps and features into one dimention per sample
dd = cc.reshape((nn, L, seqlen, n_feats))
#print ("dd: " + str(dd.shape))
return dd
def set_inputs(self, data):
self.inputs = []
self.targets = []
for i, mod in enumerate(self.input_mods):
input_ = data["in_"+mod]
input_shape = input_.shape
if self.input_seq_lens[i] > 1:
# input_ = input_.permute(0,2,1)
input_ = self.concat_sequence(self.input_seq_lens[i], input_)
# input_ = input_.permute(0,2,1)
else:
input_ = input_.permute(0,2,1)
input_ = input_.squeeze(2)
input_ = input_.permute(1,2,0,3) # L, T, B, C
self.inputs.append(input_)
for i, mod in enumerate(self.output_mods):
target_ = data["out_"+mod]
target_shape = target_.shape
if self.output_seq_lens[i] > 1:
# target_ = target_.permute(0,2,1)
target_ = self.concat_sequence(self.output_seq_lens[i], target_)
target_ = target_.permute(0,2,1)
else:
target_ = target_.permute(0,2,1)
self.targets.append(target_)
def training_step(self, batch, batch_idx):
self.set_inputs(batch)
latents = []
for i, mod in enumerate(self.input_mods):
# import pdb;pdb.set_trace()
#result = self.input_mod_funcs[i](self.inputs[i])
result = []
for inp in self.inputs[i]:
result.append(self.input_mod_funcs[i](inp))
result = torch.stack(result)
latents.append(result)
latent = torch.cat(latents,dim=1)
if self.opt.residual:
nll_loss = 0
mse_loss = 0
for i, mod in enumerate(self.output_mods):
#trans_output = self.output_mod_funcs[i](latent)
trans_output = []
for lat in latent:
trans_output.append(self.output_mod_funcs[i](lat))
trans_output = torch.stack(trans_output)
latents = trans_output[:,:self.conditioning_seq_lens[i]].permute(2,1,3,0)
trans_predicted_mean_latents = trans_output[:,self.conditioning_seq_lens[i]:self.conditioning_seq_lens[i]+self.output_seq_lens[i]]
latents = latents.reshape(latents.shape[0], latents.shape[1] * latents.shape[2], latents.shape[3])
trans_predicted_mean_latents = trans_predicted_mean_latents.reshape(trans_predicted_mean_latents.shape[0], trans_predicted_mean_latents.shape[1] * trans_predicted_mean_latents.shape[2], trans_predicted_mean_latents.shape[3])
predicted_mean = self.output_mod_mean_nets[i](trans_predicted_mean_latents).permute(1,2,0)
glow = self.output_mod_glows[i]
# import pdb;pdb.set_trace()
z, nll = glow(x=self.targets[i]-predicted_mean, cond=latents) #time, batch, features -> batch, time, features
nll_loss += Glow.loss_generative(nll)
mse_loss += 100*self.mean_loss(predicted_mean, self.targets[i])
loss = nll_loss + mse_loss
self.mse_loss = mse_loss
self.nll_loss = nll_loss
self.log('mse_loss', mse_loss)
self.log('nll_loss', nll_loss)
else:
loss = 0
for i, mod in enumerate(self.output_mods):
#output = self.output_mod_funcs[i](latent).permute(2,1,3,0)
output = []
for lat in latent:
output.append(self.output_mod_funcs[i](lat))
output = torch.stack(output).permute(2,1,3,0)
output = output.reshape(output.shape[0], output.shape[1] * output.shape[2], output.shape[3])
glow = self.output_mod_glows[i]
# import pdb;pdb.set_trace()
z, nll = glow(x=self.targets[i], cond=output) #time, batch, features -> batch, time, features
loss += Glow.loss_generative(nll)
self.log('loss', loss)
return loss
def test_step(self, batch, batch_idx):
if self.opt.residual:
self.eval()
loss = self.training_step(batch, batch_idx)
# print(loss)
return {"test_loss": loss, "test_mse_loss": self.mse_loss, "test_nll_loss": self.nll_loss}
else:
return super().test_step(batch, batch_idx)
def test_epoch_end(self, outputs):
if self.opt.residual:
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
avg_mse_loss = torch.stack([x['test_mse_loss'] for x in outputs]).mean()
avg_nll_loss = torch.stack([x['test_nll_loss'] for x in outputs]).mean()
logs = {'test_loss': avg_loss, 'test_mse_loss': avg_mse_loss, 'test_nll_loss': avg_nll_loss}
return {'log': logs}
else:
return super().test_epoch_end(outputs)
#to help debug XLA stuff, like missing ops, or data loading/compiling bottlenecks
# see https://youtu.be/iwtpwQRdb3Y?t=1056
# def on_epoch_end(self):
# import torch_xla.core.xla_model as xm
# import torch_xla.debug.metrics as met
# xm.master_print(met.metrics_report())
#def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
# optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
# optimizer.zero_grad()
|