File size: 15,215 Bytes
bc32eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import sys
import os
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.abspath(os.path.join(THIS_DIR, os.pardir))
sys.path.append(ROOT_DIR)
sys.path.append(THIS_DIR)
import torch
import torch.nn as nn
import torch.nn.functional as F
import uuid
import numpy as np

from functools import partial

from torch.nn import TransformerEncoder, TransformerEncoderLayer, Transformer
#from models.x_transformers import ContinuousTransformerWrapper, Decoder, Encoder, AutoregressiveWrapper
from x_transformers import ContinuousTransformerWrapper, Decoder, Encoder, AutoregressiveWrapper

def pick_and_pop(keys, d):
    values = list(map(lambda key: d.pop(key), keys))
    return dict(zip(keys, values))

def groupby_prefix_and_trim(prefix, d):
    kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
    kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
    return kwargs_without_prefix, kwargs

def group_dict_by_key(cond, d):
    return_val = [dict(),dict()]
    for key in d.keys():
        match = bool(cond(key))
        ind = int(not match)
        return_val[ind][key] = d[key]
    return (*return_val,)

def string_begins_with(prefix, str):
    return str.startswith(prefix)

class PositionalEncoding(nn.Module):

   def __init__(self, d_model, dropout=0.1, max_len=5000, device=None):
       super(PositionalEncoding, self).__init__()
       self.device = device
       self.dropout = nn.Dropout(p=dropout)
       self.lpe = nn.Embedding(max_len+1, d_model)
       # self.weight = None
       self.indices = torch.arange(max_len).unsqueeze(1) + 1
       if device is not None:
           self.indices = self.indices.to(self.device)

   def init_weights(self):
       initrange = 0.1
       self.lpe.weight.data.uniform_(-initrange, initrange)

   def forward(self, x, indices = None):
       np.save(str(uuid.uuid4())+".np",self.lpe.weight.data.cpu().numpy())
       if indices is None:
           indices = self.indices[:x.size(0),:]
           indices = self.dropout(indices)
       x = x + self.lpe(indices)
       return self.dropout(x)


class LearnedPositionalEncoding(nn.Module): # emm this isn't learned lol
    def __init__(self, d_model, input_length, dropout=0.1, device=None):
        super(LearnedPositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = nn.Parameter((torch.zeros(input_length, 1, d_model)))
        self.register_buffer('pe', pe)

    def forward(self, x):
        # print(x.shape)
        x = x + self.pe
        return self.dropout(x)


class BasicTransformerModel(nn.Module):
    def __init__(self, dout, dinp, nhead, dhid, nlayers, dropout=0.5, ntokens=0, device=None, use_pos_emb=False, use_rel_pos_emb=False, input_length=0,use_x_transformers=False, opt=None, discrete_inputs=False):
        super(BasicTransformerModel, self).__init__()
        self.device = device
        self.model_type = 'Transformer'
        self.use_x_transformers = use_x_transformers
        self.discrete_inputs = discrete_inputs
        if not use_x_transformers:
            if discrete_inputs:
                assert ntokens != 0 #ntoken needs to be set if we are to use an embedding layer (discrete inputs)
                self.encoder = nn.Embedding(ntokens, dinp)
            self.encoder1 = nn.Linear(dinp, dhid)
            if use_pos_emb:
                self.pos_encoder = LearnedPositionalEncoding(dhid, input_length, dropout)
            encoder_layers = TransformerEncoderLayer(dhid, nhead, dhid, dropout)
            self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
            self.dinp = dinp
            self.dhid = dhid
            self.decoder = nn.Linear(dhid, dout)
            self.use_pos_emb = use_pos_emb
            self.use_rel_pos_emb = use_rel_pos_emb
            self.input_length = input_length
            if use_rel_pos_emb and input_length > 1:
                #assert input_length > 0
                self.pos_emb = nn.Parameter((torch.zeros(input_length, input_length)))
                # self.pos_emb = nn.Parameter((torch.eye(input_length, input_length)))
                # self.pos_emb = nn.Parameter((torch.randn(input_length, input_length))/np.sqrt(dinp))

            self.init_weights()
            #self.pos_encoder.init_weights()
        else:
            if discrete_inputs:
                assert ntoken is not None #ntoken needs to be set if we are to use an embedding layer (discrete inputs)
                self.encoder = nn.Embedding(ntoken, dinp)
            self.model = ContinuousTransformerWrapper(
                dim_in = dinp,
                dim_out = dout,
                max_seq_len = 1024,
                use_pos_emb = use_pos_emb,
                attn_layers = Encoder(
                    dim = dhid,
                    depth = nlayers,
                    heads = nhead,
                    rotary_pos_emb = opt.use_rotary_pos_emb,
                    #rel_pos_bias = True
                )
            )

    def generate_square_subsequent_mask(self, sz, prefix_length = 1):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask[:,:prefix_length] = 1
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def init_weights(self):
        initrange = 0.1
        # self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src, src_mask=None):
        #print(src.shape)
        if self.discrete_inputs:
            src = self.encoder(src.squeeze(0))
        if not self.use_x_transformers:
            src = self.encoder1(src)
            # import pdb;pdb.set_trace()
            #src *= math.sqrt(self.dhid)
            if self.use_pos_emb:
                src = self.pos_encoder(src)
            #src /= math.sqrt(self.dhid)
            # print(src)
            # print(torch.mm(src[:,0,:],src[:,0,:].T))
            if self.use_rel_pos_emb and self.input_length > 1:
                #print(self.pos_emb)
                #src_mask += self.pos_emb
                if src_mask is not None:
                    output = self.transformer_encoder(src, src_mask + self.pos_emb)
                else:
                    output = self.transformer_encoder(src, self.pos_emb)
                #output = self.transformer_encoder(src, self.pos_emb)
            else:
                if src_mask is not None:
                    output = self.transformer_encoder(src, src_mask)
                else:
                    output = self.transformer_encoder(src)
                #output = self.transformer_encoder(src)
            output = self.decoder(output)
            #print(output.shape)
            if self.discrete_inputs:
                #return output.unsqueeze(0)
                return output.permute(1,0,2)
            else:
                return output
        else:
            assert src_mask == None
            src = src.permute(1,0,2)
            mask = torch.ones(src.shape[0], src.shape[1]).bool().cuda()
            output = self.model(src, mask = mask)
            # output = self.model(src.permute(1,0,2))
            return output.permute(1,0,2)

class BasicTransformerModelCausal(nn.Module):
    def __init__(self, dout, dinp, nhead, dhid, nlayers, dropout=0.5, ntokens=0, device=None, use_pos_emb=False, use_rel_pos_emb=False, input_length=0,use_x_transformers=False, opt=None, discrete_inputs=False):
        self.model = BasicTransformerModel(self, dout, dinp, nhead, dhid, nlayers, dropout=0.5, ntokens=0, device=None, use_pos_emb=False, use_rel_pos_emb=False, input_length=0,use_x_transformers=False, opt=None, discrete_inputs=False)
        self.mask = self.model.generate_square_subsequent_mask(input_length)
    def init_weights(self):
        self.model.init_weights()
    def generate_square_subsequent_mask(self, sz, prefix_length = 1):
        self.model.generate_square_subsequent_mask(sz,prefix_length)
    def forward(self, src, src_mask=None):
        return self.model(src,src_mask=self.mask)


class EncDecTransformerModel(nn.Module):

    def __init__(self, dout, src_d, tgt_d, nhead, dhid, nlayers, dropout=0.5,device=None,use_pos_emb=False,src_length=0,tgt_length=0,use_x_transformers=False,opt=None):
        super(EncDecTransformerModel, self).__init__()
        self.device = device
        self.model_type = 'Transformer'
        self.use_x_transformers = use_x_transformers
        self.encoder1 = nn.Linear(src_d, dhid)
        self.encoder2 = nn.Linear(tgt_d, dhid)
        if not use_x_transformers:
            self.transformer = Transformer(d_model=dhid, nhead=nhead, num_encoder_layers=nlayers, num_decoder_layers=nlayers, dropout=0, activation="relu")
            #enc_layer = TransformerEncoderLayer(d_model=dhid, nhead=nhead, dropout=0, activation="relu")
            #self.transformerEnc = TransformerEncoder(enc_layer, nlayers)
        else:
            self.transformer = EncDecXTransformer(enc_dim_in=src_d, enc_dim_out=tgt_d, dec_din_in=tgt_d, edec_dim_out=dout, enc_dim=dhid, dec_dim=dhid, nc_heads=nhead, dec_heads=nhead, enc_depth=nlayers, dec_depth=nlayers, enc_dropout=dropout, dec_dropout=dropout, enc_max_seq_len=1024, dec_max_seq_len=1024)

        #xdecoder = Decoder(dim=dhid, depth=nlayers, heads=nhead, cross_attend=True)
        #self.transformer = Transformer(d_model=dhid, nhead=nhead, num_encoder_layers=nlayers, num_decoder_layers=nlayers, dropout=dropout, activation="gelu", custom_decoder=xdecoder)
        #self.transformer = Transformer(d_model=dhid, nhead=nhead, num_encoder_layers=nlayers, num_decoder_layers=nlayers)
        # self.encoder = nn.Embedding(ntoken, dinp)
        self.src_d = src_d
        self.tgt_d = tgt_d
        self.dhid = dhid
        self.decoder = nn.Linear(dhid, dout)
        self.use_pos_emb = use_pos_emb
        if use_pos_emb:
            assert src_length > 0
            assert tgt_length > 0
            self.src_pos_emb = nn.Parameter((torch.zeros(src_length, src_length)))
            self.tgt_pos_emb = nn.Parameter((torch.zeros(tgt_length, tgt_length)))

        if not use_x_transformers:
            tgt_mask = self.generate_square_subsequent_mask(tgt_length)
        else:
            tgt_mask = self.generate_square_subsequent_mask_bool(tgt_length)
        self.register_buffer("tgt_mask", tgt_mask)
        #a = torch.randn(32,3,512)
        #b = torch.randn(32,3,512)
        #self.register_buffer('a', a)
        #self.register_buffer('b', b)


        self.init_weights()

    def generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def generate_square_subsequent_mask_bool(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1).bool()
        return mask

    def init_weights(self):
        initrange = 0.1
        # self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src, tgt):
        if not self.use_x_transformers:
            # import pdb;pdb.set_trace()
            src = self.encoder1(src)
            tgt = self.encoder2(tgt)
            tgt_mask = self.tgt_mask[:tgt.shape[0], :tgt.shape[0]]
            if self.use_pos_emb:
                tgt_pos_emb = self.tgt_pos_emb[:tgt.shape[0], :tgt.shape[0]]
                # import pdb;pdb.set_trace()
                output = self.transformer(src=src, tgt=tgt, src_mask=self.src_pos_emb, tgt_mask=tgt_pos_emb+tgt_mask)
                #output = self.transformer(src=src, tgt=tgt)
            else:
                output = self.transformer(src=src, tgt=tgt, tgt_mask=tgt_mask)
            #output = self.transformer(src=self.a, tgt=self.b)
            #output = self.transformerEnc(src=self.a)
            output = self.decoder(output)
            return output
        else:
            src = self.encoder1(src)
            tgt = self.encoder2(tgt)
            #tgt_mask = self.tgt_mask[:tgt.shape[0], :tgt.shape[0]]
            # if self.use_pos_emb:
            #     tgt_pos_emb = self.tgt_pos_emb[:tgt.shape[0], :tgt.shape[0]]
            #     # import pdb;pdb.set_trace()
            #     output = self.transformer(src=src.permute(1,2,0), tgt=tgt.permute(1,2,0), src_mask=self.src_pos_emb, tgt_mask=tgt_pos_emb+tgt_mask)
            #     #output = self.transformer(src=src, tgt=tgt)
            # else:
            # output = self.transformer(src=src.permute(1,0,2), tgt=tgt.permute(1,0,2), tgt_mask=tgt_mask)
            # output = self.transformer(src=src, tgt=tgt, tgt_mask=tgt_mask)
            output = self.transformer(src=src, tgt=tgt)
            #output = self.transformer(src=self.a, tgt=self.b)
            #output = self.transformer(src=tgt, tgt=tgt) #hmm thats an interesting way of residual attention
            output = self.decoder(output)
            return output
            #return


class EncDecXTransformer(nn.Module):
    def __init__(
            self,
            *,
            # dim,
            tie_token_emb = False,
            **kwargs
    ):
        super().__init__()
        enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
        dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)

        # import pdb;pdb.set_trace()
        # assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
        # enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
        enc_transformer_kwargs = pick_and_pop(['max_seq_len'], enc_kwargs)
        # enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)

        # dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
        dec_transformer_kwargs = pick_and_pop(['max_seq_len'], dec_kwargs)

        self.encoder = ContinuousTransformerWrapper(
            **enc_transformer_kwargs,
            attn_layers = Encoder(**enc_kwargs)
        )

        self.decoder = ContinuousTransformerWrapper(
            **dec_transformer_kwargs,
            attn_layers = Decoder(cross_attend = True, **dec_kwargs)
        )

        if tie_token_emb:
            self.decoder.token_emb = self.encoder.token_emb

        # self.decoder = AutoregressiveWrapper(self.decoder)

    @torch.no_grad()
    def generate(self, seq_in, seq_out_start, seq_len, src_mask = None):
        encodings = self.encoder(seq_in, return_embeddings = True, mask = src_mask)
        return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = src_mask)

    def forward(self, src, tgt, src_mask = None, tgt_mask = None):
        enc = self.encoder(src, mask = src_mask, return_embeddings = True)
        #out = self.decoder(tgt, context = enc, mask = tgt_mask, context_mask = src_mask)
        out = self.decoder(tgt, context = enc)
        return out