File size: 5,531 Bytes
bc32eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch import nn
from .transformer import BasicTransformerModel
from models import BaseModel
from models.flowplusplus import FlowPlusPlus
import ast

from .util.generation import autoregressive_generation_multimodal
import argparse
from argparse import Namespace
import models

class Residualflower2Model(BaseModel):
    def __init__(self, opt):
        super().__init__(opt)

        opt_vars = vars(opt)
        mean_vars = self.get_argvars(opt.mean_model, opt)
        mean_opt = opt_vars.copy()
        for k,v in mean_vars.items():
            val = mean_opt["mean_"+k]
            if k not in mean_opt:
                mean_opt[k] = val
            del mean_opt["mean_"+k]
        mean_opt = Namespace(**mean_opt)
        self.mean_model = models.create_model_by_name(opt.mean_model, mean_opt)

        residual_vars = self.get_argvars(opt.residual_model, opt)
        residual_opt = opt_vars.copy()
        for k,v in residual_vars.items():
            val = residual_opt["residual_"+k]
            if k not in residual_opt:
                residual_opt[k] = val
            del residual_opt["residual_"+k]
        residual_opt = Namespace(**residual_opt)
        self.residual_model = models.create_model_by_name(opt.residual_model, residual_opt)

        self.mean_loss = nn.MSELoss()
        self.mse_loss = 0
        self.nll_loss = 0

    def name(self):
        return "Transflower"

    @staticmethod
    def get_argvars(model_name, opt):
        temp_parser = argparse.ArgumentParser()
        model_option_setter = models.get_option_setter(model_name)
        vs = vars(model_option_setter(temp_parser, opt).parse_args([]))
        return vs

    @staticmethod
    def modify_commandline_options(parser, opt):
        parser.add_argument('--dropout', type=float, default=0.1)
        parser.add_argument('--mean_model', type=str, default="transformer")
        parser.add_argument('--residual_model', type=str, default="transflower")
        opt2, _ = parser.parse_known_args()
        mean_vars = Residualflower2Model.get_argvars(opt2.mean_model, opt)
        for k,v in mean_vars.items():
            # print(k)
            if type(v) != type(True):
                if type(v) != type(None):
                    parser.add_argument('--mean_'+k, type=type(v), default=v)
                else:
                    parser.add_argument('--mean_'+k, default=v)
            else:
                parser.add_argument('--mean_'+k, action="store_true")
        residual_vars = Residualflower2Model.get_argvars(opt2.residual_model, opt)
        for k,v in residual_vars.items():
            if type(v) != type(True):
                if type(v) != type(None):
                    parser.add_argument('--residual_'+k, type=type(v), default=v)
                else:
                    parser.add_argument('--residual_'+k, default=v)
            else:
                parser.add_argument('--residual_'+k, action="store_true")
        return parser

    def forward(self, data):
        # in lightning, forward defines the prediction/inference actions
        predicted_means = self.mean_model(data)
        predicted_residuals = self.residual_model(data)
        outputs = []
        for i, mod in enumerate(self.output_mods):
            outputs.append(predicted_means[i]+predicted_residuals[i])
        return outputs

    #def generate(self,features, teacher_forcing=False):
    #    inputs_ = []
    #    for i,mod in enumerate(self.input_mods):
    #        input_ = features["in_"+mod]
    #        input_ = torch.from_numpy(input_).float().cuda()
    #        input_shape = input_.shape
    #        input_ = input_.reshape((input_shape[0]*input_shape[1], input_shape[2], input_shape[3])).permute(2,0,1).to(self.device)
    #        inputs_.append(input_)
    #    output_seq = autoregressive_generation_multimodal(inputs_, self, autoreg_mods=self.output_mods, teacher_forcing=teacher_forcing)
    #    return output_seq

    def training_step(self, batch, batch_idx):
        self.set_inputs(batch)

        self.mean_model.set_inputs(batch)
        predicted_means = self.mean_model(self.inputs)
        mse_loss = 0
        for i, mod in enumerate(self.output_mods):
            mse_loss += 100*self.mean_loss(predicted_means[i], self.targets[i])

        for i, mod in enumerate(self.output_mods):
            # import pdb;pdb.set_trace()
            batch["out_"+mod] = batch["out_"+mod] - predicted_means[i].permute(1,0,2)

        # self.residual_model.set_inputs(batch)
        nll_loss = self.residual_model.training_step(batch, batch_idx)
        loss = mse_loss + nll_loss
        self.mse_loss = mse_loss
        self.nll_loss = nll_loss
        # print("mse_loss: ", mse_loss)
        # print("nll_loss: ", nll_loss)
        self.log('mse_loss', mse_loss)
        self.log('nll_loss', nll_loss)
        self.log('loss', loss)
        return loss

    def test_step(self, batch, batch_idx):
        self.eval()
        loss = self.training_step(batch, batch_idx)
        # print(loss)
        return {"test_loss": loss, "test_mse_loss": self.mse_loss, "test_nll_loss": self.nll_loss}

    def test_epoch_end(self, outputs):
        avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
        avg_mse_loss = torch.stack([x['test_mse_loss'] for x in outputs]).mean()
        avg_nll_loss = torch.stack([x['test_nll_loss'] for x in outputs]).mean()
        logs = {'test_loss': avg_loss, 'test_mse_loss': avg_mse_loss, 'test_nll_loss': avg_nll_loss}

        return {'log': logs}