Spaces:
Runtime error
Runtime error
File size: 8,925 Bytes
bc32eea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import re
import copy
import torch
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from shutil import copyfile
def get_proper_cuda_device(device, verbose=True):
if not isinstance(device, list):
device = [device]
count = torch.cuda.device_count()
if verbose:
print("[Builder]: Found {} gpu".format(count))
for i in range(len(device)):
d = device[i]
did = None
if isinstance(d, str):
if re.search("cuda:[\d]+", d):
did = int(d[5:])
elif isinstance(d, int):
did = d
if did is None:
raise ValueError("[Builder]: Wrong cuda id {}".format(d))
if did < 0 or did >= count:
if verbose:
print("[Builder]: {} is not found, ignore.".format(d))
device[i] = None
else:
device[i] = did
device = [d for d in device if d is not None]
return device
def get_proper_device(devices, verbose=True):
origin = copy.copy(devices)
devices = copy.copy(devices)
if not isinstance(devices, list):
devices = [devices]
use_cpu = any([d.find("cpu")>=0 for d in devices])
use_gpu = any([(d.find("cuda")>=0 or isinstance(d, int)) for d in devices])
assert not (use_cpu and use_gpu), "{} contains cpu and cuda device.".format(devices)
if use_gpu:
devices = get_proper_cuda_device(devices, verbose)
if len(devices) == 0:
if verbose:
print("[Builder]: Failed to find any valid gpu in {}, use `cpu`.".format(origin))
devices = ["cpu"]
return devices
def _file_at_step(step):
return "save_{}k{}.pkg".format(int(step // 1000), int(step % 1000))
def _file_best():
return "trained.pkg"
def save(global_step, graph, optim, criterion_dict=None, pkg_dir="", is_best=False, max_checkpoints=None):
if optim is None:
raise ValueError("cannot save without optimzier")
state = {
"global_step": global_step,
# DataParallel wrap model in attr `module`.
"graph": graph.module.state_dict() if hasattr(graph, "module") else graph.state_dict(),
"optim": optim.state_dict(),
"criterion": {}
}
if criterion_dict is not None:
for k in criterion_dict:
state["criterion"][k] = criterion_dict[k].state_dict()
save_path = os.path.join(pkg_dir, _file_at_step(global_step))
best_path = os.path.join(pkg_dir, _file_best())
torch.save(state, save_path)
if is_best:
copyfile(save_path, best_path)
if max_checkpoints is not None:
history = []
for file_name in os.listdir(pkg_dir):
if re.search("save_\d*k\d*\.pkg", file_name):
digits = file_name.replace("save_", "").replace(".pkg", "").split("k")
number = int(digits[0]) * 1000 + int(digits[1])
history.append(number)
history.sort()
while len(history) > max_checkpoints:
path = os.path.join(pkg_dir, _file_at_step(history[0]))
print("[Checkpoint]: remove {} to keep {} checkpoints".format(path, max_checkpoints))
if os.path.exists(path):
os.remove(path)
history.pop(0)
def load(step_or_path, graph, optim=None, criterion_dict=None, pkg_dir="", device=None):
step = step_or_path
save_path = None
print("LOADING FROM pkg_dir: " + pkg_dir)
if isinstance(step, int):
save_path = os.path.join(pkg_dir, _file_at_step(step))
if isinstance(step, str):
if pkg_dir is not None:
if step == "best":
save_path = os.path.join(pkg_dir, _file_best())
else:
save_path = os.path.join(pkg_dir, step)
else:
save_path = step
if save_path is not None and not os.path.exists(save_path):
print("[Checkpoint]: Failed to find {}".format(save_path))
return
if save_path is None:
print("[Checkpoint]: Cannot load the checkpoint with given step or filename or `best`")
return
# begin to load
state = torch.load(save_path, map_location=device)
global_step = state["global_step"]
graph.load_state_dict(state["graph"])
if optim is not None:
optim.load_state_dict(state["optim"])
if criterion_dict is not None:
for k in criterion_dict:
criterion_dict[k].load_state_dict(state["criterion"][k])
graph.set_actnorm_init(inited=True)
print("[Checkpoint]: Load {} successfully".format(save_path))
return global_step
def __save_figure_to_numpy(fig):
# save it to a numpy array.
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def __to_ndarray_list(tensors, titles):
if not isinstance(tensors, list):
tensors = [tensors]
titles = [titles]
assert len(titles) == len(tensors),\
"[visualizer]: {} titles are not enough for {} tensors".format(
len(titles), len(tensors))
for i in range(len(tensors)):
if torch.is_tensor(tensors[i]):
tensors[i] = tensors[i].cpu().detach().numpy()
return tensors, titles
def __get_figures(num_tensors, figsize):
fig, axes = plt.subplots(num_tensors, 1, figsize=figsize)
if not isinstance(axes, np.ndarray):
axes = np.asarray([axes])
return fig, axes
def __make_dir(file_name, plot_dir):
if file_name is not None and not os.path.exists(plot_dir):
os.makedirs(plot_dir)
def __draw(fig, file_name, plot_dir):
if file_name is not None:
plt.savefig('{}/{}.png'.format(plot_dir, file_name), format='png')
plt.close(fig)
return None
else:
fig.tight_layout()
fig.canvas.draw()
data = __save_figure_to_numpy(fig)
plt.close(fig)
return data
def __prepare_cond(autoreg, control, data_device):
nn,seqlen,n_feats = autoreg.shape
autoreg = autoreg.reshape((nn, seqlen*n_feats))
nn,seqlen,n_feats = control.shape
control = control.reshape((nn, seqlen*n_feats))
cond = torch.from_numpy(np.expand_dims(np.concatenate((autoreg,control),axis=1), axis=-1))
return cond.to(data_device)
def __generate_sample(graph, data_batch, device, eps_std=1.0):
print("generate_sample")
seqlen = data_batch["seqlen"].cpu()[0].numpy()
fps = data_batch["frame_rate"].cpu()[0].numpy()
autoreg_all = data_batch["autoreg"].cpu().numpy()
control_all = data_batch["control"].cpu().numpy()
print("autoreg_all: " +str(autoreg_all.shape))
autoreg = autoreg_all[:,:seqlen,:]
if hasattr(graph, "module"):
graph.module.init_lstm_hidden()
else:
graph.init_lstm_hidden()
sampled_all = np.zeros(autoreg_all.shape)
sampled_all[:,:seqlen,:] = autoreg_all[:,:seqlen,:]
autoreg = autoreg_all[:,:seqlen,:]
for i in range(0,control_all.shape[1]-seqlen):
control = control_all[:,i:(i+seqlen+1),:]
cond = __prepare_cond(autoreg, control, device)
sampled = graph(z=None, cond=cond, eps_std=eps_std, reverse=True)
sampled = sampled.cpu().numpy()
sampled_all[:,(i+seqlen),:] = sampled[:,:,0]
autoreg = np.concatenate((autoreg[:,1:,:], sampled.swapaxes(1,2)), axis=1)
anim_clip = np.concatenate((sampled_all, control_all), axis=2)
return anim_clip
def __get_size_for_spec(tensors):
spectrogram = tensors[0]
fig_w = np.min([int(np.ceil(spectrogram.shape[1] / 10.0)), 10])
fig_w = np.max([fig_w, 3])
fig_h = np.max([3 * len(tensors), 3])
return (fig_w, fig_h)
def __get_aspect(spectrogram):
fig_w = np.min([int(np.ceil(spectrogram.shape[1] / 10.0)), 10])
fig_w = np.max([fig_w, 3])
aspect = 3.0 / fig_w
if spectrogram.shape[1] > 50:
aspect = aspect * spectrogram.shape[1] / spectrogram.shape[0]
else:
aspect = aspect * spectrogram.shape[1] / (spectrogram.shape[0])
return aspect
def plot_prob(done, title="", file_name=None, plot_dir=None):
__make_dir(file_name, plot_dir)
done, title = __to_ndarray_list(done, title)
for i in range(len(done)):
done[i] = np.reshape(done[i], (-1, done[i].shape[-1]))
figsize = (5, 5 * len(done))
fig, axes = __get_figures(len(done), figsize)
for ax, d, t in zip(axes, done, title):
im = ax.imshow(d, vmin=0, vmax=1, cmap="Blues", aspect=d.shape[1]/d.shape[0])
ax.set_title(t)
ax.set_yticks(np.arange(d.shape[0]))
lables = ["Frame{}".format(i+1) for i in range(d.shape[0])]
ax.set_yticklabels(lables)
ax.set_yticks(np.arange(d.shape[0])-.5, minor=True)
ax.grid(which="minor", color="g", linestyle='-.', linewidth=1)
ax.invert_yaxis()
return __draw(fig, file_name, plot_dir)
|