File size: 10,145 Bytes
bc32eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.nn.utils import weight_norm
from models.util import concat_elu, WNConv2d

class NN(nn.Module):
    """Neural network used to parametrize the transformations of an MLCoupling.

    An `NN` is a stack of blocks, where each block consists of the following
    two layers connected in a residual fashion:
      1. Conv: input -> nonlinearit -> conv3x3 -> nonlinearity -> gate
      2. Attn: input -> conv1x1 -> multihead self-attention -> gate,
    where gate refers to a 1×1 convolution that doubles the number of channels,
    followed by a gated linear unit (Dauphin et al., 2016).
    The convolutional layer is identical to the one used by PixelCNN++
    (Salimans et al., 2017), and the multi-head self attention mechanism we
    use is identical to the one in the Transformer (Vaswani et al., 2017).

    Args:
        in_channels (int): Number of channels in the input.
        out_channels (int): Number of channels in the output.
        num_channels (int): Number of channels in each block of the network.
        num_blocks (int): Number of blocks in the network.
        num_components (int): Number of components in the mixture.
        drop_prob (float): Dropout probability.
        use_attn (bool): Use attention in each block.
        aux_channels (int): Number of channels in optional auxiliary input.
    """
    def __init__(self, in_channels, out_channels, num_channels, num_blocks, num_components, drop_prob, use_attn=True, aux_channels=None):
        #import pdb;pdb.set_trace()
        super(NN, self).__init__()
        self.k = num_components  # k = number of mixture components
        self.in_conv = WNConv2d(in_channels, num_channels, kernel_size=3, padding=1)
        self.share_attn_params = False
        if self.share_attn_params:
            self.mid_conv = ConvAttnBlock(num_channels, drop_prob, use_attn, aux_channels)
            self.num_blocks = num_blocks
        else:
            self.mid_convs = nn.ModuleList([ConvAttnBlock(num_channels, drop_prob, use_attn, aux_channels)
                                            for _ in range(num_blocks)])
        self.out_conv = WNConv2d(num_channels, out_channels * (2 + 3 * self.k),
                                 kernel_size=3, padding=1)
        self.rescale = weight_norm(Rescale(out_channels))
        self.out_channels = out_channels

    def forward(self, x, aux=None):
        b, c, h, w = x.size()
        #import pdb;pdb.set_trace()
        x = self.in_conv(x)
        if self.share_attn_params:
            for _ in range(self.num_blocks):
                x = self.mid_conv(x, aux)
        else:
            for conv in self.mid_convs:
                x = conv(x, aux)
        x = self.out_conv(x)

        #import pdb;pdb.set_trace()
        # Split into components and post-process
        x = x.view(b, -1, self.out_channels, h, w)
        s, t, pi, mu, scales = x.split((1, 1, self.k, self.k, self.k), dim=1)
        s = self.rescale(torch.tanh(s.squeeze(1)))
        t = t.squeeze(1)
        scales = scales.clamp(min=-7)  # From the code in original Flow++ paper

        return s, t, pi, mu, scales


class ConvAttnBlock(nn.Module):
    def __init__(self, num_channels, drop_prob, use_attn, aux_channels):
        super(ConvAttnBlock, self).__init__()
        self.conv = GatedConv(num_channels, drop_prob, aux_channels)
        self.norm_1 = nn.LayerNorm(num_channels)
        if use_attn:
            self.attn = GatedAttn(num_channels, drop_prob=drop_prob)
            self.norm_2 = nn.LayerNorm(num_channels)
        else:
            self.attn = None

    def forward(self, x, aux=None):
        x = self.conv(x, aux) + x
        x = x.permute(0, 2, 3, 1)  # (b, h, w, c)
        x = self.norm_1(x)

        if self.attn:
            x = self.attn(x) + x
            x = self.norm_2(x)
        x = x.permute(0, 3, 1, 2)  # (b, c, h, w)

        return x


class GatedAttn(nn.Module):
    """Gated Multi-Head Self-Attention Block

    Based on the paper:
    "Attention Is All You Need"
    by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
        Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
    (https://arxiv.org/abs/1706.03762).

    Args:
        d_model (int): Number of channels in the input.
        num_heads (int): Number of attention heads.
        drop_prob (float): Dropout probability.
    """
    def __init__(self, d_model, num_heads=4, drop_prob=0.):
        super(GatedAttn, self).__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.drop_prob = drop_prob
        self.in_proj = weight_norm(nn.Linear(d_model, 3 * d_model, bias=False))
        self.gate = weight_norm(nn.Linear(d_model, 2 * d_model))

    def forward(self, x):
        # Flatten and encode position
        b, h, w, c = x.size()
        x = x.view(b, h * w, c)
        _, seq_len, num_channels = x.size()
        pos_encoding = self.get_pos_enc(seq_len, num_channels, x.device)
        x = x + pos_encoding

        # Compute q, k, v
        memory, query = torch.split(self.in_proj(x), (2 * c, c), dim=-1)
        q = self.split_last_dim(query, self.num_heads)
        k, v = [self.split_last_dim(tensor, self.num_heads)
                for tensor in torch.split(memory, self.d_model, dim=2)]

        # Compute attention and reshape
        key_depth_per_head = self.d_model // self.num_heads
        q *= key_depth_per_head ** -0.5
        x = self.dot_product_attention(q, k, v)
        x = self.combine_last_two_dim(x.permute(0, 2, 1, 3))
        x = x.transpose(1, 2).view(b, c, h, w).permute(0, 2, 3, 1)  # (b, h, w, c)

        x = self.gate(x)
        a, b = x.chunk(2, dim=-1)
        x = a * torch.sigmoid(b)

        return x

    def dot_product_attention(self, q, k, v, bias=False):
        """Dot-product attention.

        Args:
            q (torch.Tensor): Queries of shape (batch, heads, length_q, depth_k)
            k (torch.Tensor): Keys of shape (batch, heads, length_kv, depth_k)
            v (torch.Tensor): Values of shape (batch, heads, length_kv, depth_v)
            bias (bool): Use bias for attention.

        Returns:
            attn (torch.Tensor): Output of attention mechanism.
        """
        weights = torch.matmul(q, k.permute(0, 1, 3, 2))
        if bias:
            weights += self.bias
        weights = F.softmax(weights, dim=-1)
        weights = F.dropout(weights, self.drop_prob, self.training)
        attn = torch.matmul(weights, v)

        return attn

    @staticmethod
    def split_last_dim(x, n):
        """Reshape x so that the last dimension becomes two dimensions.
        The first of these two dimensions is n.
        Args:
            x (torch.Tensor): Tensor with shape (..., m)
            n (int): Size of second-to-last dimension.
        Returns:
            ret (torch.Tensor): Resulting tensor with shape (..., n, m/n)
        """
        old_shape = list(x.size())
        last = old_shape[-1]
        new_shape = old_shape[:-1] + [n] + [last // n if last else None]
        ret = x.view(new_shape)

        return ret.permute(0, 2, 1, 3)

    @staticmethod
    def combine_last_two_dim(x):
        """Merge the last two dimensions of `x`.

        Args:
            x (torch.Tensor): Tensor with shape (..., m, n)

        Returns:
            ret (torch.Tensor): Resulting tensor with shape (..., m * n)
        """
        old_shape = list(x.size())
        a, b = old_shape[-2:]
        new_shape = old_shape[:-2] + [a * b if a and b else None]
        ret = x.contiguous().view(new_shape)

        return ret

    @staticmethod
    def get_pos_enc(seq_len, num_channels, device):
        position = torch.arange(seq_len, dtype=torch.float32, device=device)
        num_timescales = num_channels // 2
        log_timescale_increment = math.log(10000.) / (num_timescales - 1)
        inv_timescales = torch.arange(num_timescales,
                                      dtype=torch.float32,
                                      device=device)
        inv_timescales *= -log_timescale_increment
        inv_timescales = inv_timescales.exp_()
        scaled_time = position.unsqueeze(1) * inv_timescales.unsqueeze(0)
        encoding = torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1)
        encoding = F.pad(encoding, [0, num_channels % 2, 0, 0])
        encoding = encoding.view(1, seq_len, num_channels)

        return encoding


class GatedConv(nn.Module):
    """Gated Convolution Block

    Originally used by PixelCNN++ (https://arxiv.org/pdf/1701.05517).

    Args:
        num_channels (int): Number of channels in hidden activations.
        drop_prob (float): Dropout probability.
        aux_channels (int): Number of channels in optional auxiliary input.
    """
    def __init__(self, num_channels, drop_prob=0., aux_channels=None):
        super(GatedConv, self).__init__()
        self.nlin = concat_elu
        self.conv = WNConv2d(2 * num_channels, num_channels, kernel_size=3, padding=1)
        self.drop = nn.Dropout2d(drop_prob)
        self.gate = WNConv2d(2 * num_channels, 2 * num_channels, kernel_size=1, padding=0)
        if aux_channels is not None:
            self.aux_conv = WNConv2d(2 * aux_channels, num_channels, kernel_size=1, padding=0)
        else:
            self.aux_conv = None

    def forward(self, x, aux=None):
        x = self.nlin(x)
        x = self.conv(x)
        if aux is not None:
            aux = self.nlin(aux)
            x = x + self.aux_conv(aux)
        x = self.nlin(x)
        x = self.drop(x)
        x = self.gate(x)
        a, b = x.chunk(2, dim=1)
        x = a * torch.sigmoid(b)

        return x


class Rescale(nn.Module):
    """Per-channel rescaling. Need a proper `nn.Module` so we can wrap it
    with `torch.nn.utils.weight_norm`.
    Args:
        num_channels (int): Number of channels in the input.
    """

    def __init__(self, num_channels):
        super(Rescale, self).__init__()
        self.weight = nn.Parameter(torch.ones(num_channels, 1, 1))

    def forward(self, x):
        x = self.weight * x
        return x