Spaces:
Runtime error
Runtime error
File size: 13,340 Bytes
bc32eea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from models.flowplusplus.act_norm import ActNorm, BatchNorm
from models.flowplusplus.inv_conv import InvConv, InvertibleConv1x1
from models.flowplusplus.nn import GatedConv
from models.flowplusplus.coupling import Coupling
from models.util import channelwise, checkerboard, Flip, safe_log, squeeze, unsqueeze
from models.moglow.modules import GaussianDiag, StudentT
class FlowPlusPlus(nn.Module):
"""Flow++ Model
Based on the paper:
"Flow++: Improving Flow-Based Generative Models
with Variational Dequantization and Architecture Design"
by Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, Pieter Abbeel
(https://openreview.net/forum?id=Hyg74h05tX).
Args:
scales (tuple or list): Number of each type of coupling layer in each
scale. Each scale is a 2-tuple of the form
(num_channelwise, num_checkerboard).
in_channels (int): Number of channels in the input.
mid_channels (int): Number of channels in the intermediate layers.
num_blocks (int): Number of residual blocks in the s and t network of
`Coupling` layers.
num_dequant_blocks (int): Number of blocks in the dequantization flows.
"""
def __init__(self,
scales=((0, 4), (2, 3)),
in_shape=(3, 32, 32),
cond_dim=0,
mid_channels=96,
num_blocks=10,
num_components=32,
use_attn=True,
use_logmix=True,
use_transformer_nn=False,
use_pos_emb=False,
use_rel_pos_emb=False,
num_heads=10,
drop_prob=0.2,
norm_layer=None,
cond_concat_dims=True,
cond_seq_len=1,
flow_dist="normal",
flow_dist_param=50,
bn_momentum=0.1):
super(FlowPlusPlus, self).__init__()
# Register bounds to pre-process images, not learnable
self.register_buffer('bounds', torch.tensor([0.9], dtype=torch.float32))
self.flows = _FlowStep(scales=scales,
in_shape=in_shape,
cond_dim=cond_dim,
mid_channels=mid_channels,
num_blocks=num_blocks,
num_components=num_components,
use_attn=use_attn,
use_logmix=use_logmix,
use_transformer_nn=use_transformer_nn,
use_pos_emb=use_pos_emb,
use_rel_pos_emb=use_rel_pos_emb,
num_heads=num_heads,
drop_prob=drop_prob,
norm_layer=norm_layer,
cond_concat_dims=cond_concat_dims,
cond_seq_len=cond_seq_len,
bn_momentum=bn_momentum)
if flow_dist == "normal":
self.distribution = GaussianDiag()
elif flow_dist == "studentT":
in_channels, in_height, in_width = in_shape
self.distribution = StudentT(flow_dist_param, in_channels)
def forward(self, x, cond, reverse=False):
if cond is not None:
cond = cond.permute(0,2,1).unsqueeze(3)
if not reverse:
if x is not None:
x = x.permute(0,2,1).unsqueeze(3)
else:
c, h, w = self.flows.z_dim()
# x = 1.0*torch.randn((cond.size(0), c, h, w), dtype=torch.float32).type_as(cond)
eps_std=1.0
# x = self.distribution.sample((cond.size(0), c, h, w), eps_std, device=cond.device).type_as(cond)
assert w==1
x = self.distribution.sample((cond.size(0), c, h), eps_std, device=cond.device).type_as(cond)
x = x.unsqueeze(-1)
# import pdb;pdb.set_trace()
sldj = torch.zeros(x.size(0), device=x.device)
x, sldj = self.flows(x, cond, sldj, reverse)
if reverse:
if x is not None:
x = x.squeeze(3).permute(0,2,1)
return x, sldj
def loss_generative(self, z, sldj):
"""Negative log-likelihood loss assuming isotropic gaussian with unit norm.
Args:
k (int or float): Number of discrete values in each input dimension.
E.g., `k` is 256 for natural images.
See Also:
Equation (3) in the RealNVP paper: https://arxiv.org/abs/1605.08803
"""
# print(z)
# prior_ll = -0.5 * (z ** 2 + np.log(2 * np.pi))
# prior_ll = prior_ll.flatten(1).sum(-1)# \
prior_ll = self.distribution.logp(z)
prior_ll = prior_ll.flatten(1).sum(-1)# \
# import pdb;pdb.set_trace()
# - np.log(k) * np.prod(z.size()[1:])
ll = prior_ll + sldj
# print(sldj.mean())
# import pdb;pdb.set_trace()
nll = -ll.mean()/float(np.log(2.) * z.size(2) * z.size(3))
# nll = -ll.mean()/float(np.log(2.))
return nll
class _FlowStep(nn.Module):
"""Recursive builder for a Flow++ model.
Each `_FlowStep` corresponds to a single scale in Flow++.
The constructor is recursively called to build a full model.
Args:
scales (tuple): Number of each type of coupling layer in each scale.
Each scale is a 2-tuple of the form (num_channelwise, num_checkerboard).
in_channels (int): Number of channels in the input.
mid_channels (int): Number of channels in the intermediate layers.
num_blocks (int): Number of residual blocks in the s and t network of
`Coupling` layers.
num_components (int): Number of components in the mixture.
use_attn (bool): Use attention in the coupling layers.
drop_prob (float): Dropout probability.
"""
def __init__(self, scales, in_shape, cond_dim, mid_channels, num_blocks, num_components, use_attn, use_logmix, use_transformer_nn, use_pos_emb, use_rel_pos_emb, num_heads, drop_prob, norm_layer, bn_momentum, cond_concat_dims, cond_seq_len):
super(_FlowStep, self).__init__()
in_channels, in_height, in_width = in_shape
num_channelwise, num_checkerboard = scales[0]
#import pdb;pdb.set_trace()
channels = []
for i in range(num_channelwise):
new_channels = in_channels// 2
out_channels = in_channels-new_channels
# print(norm_layer)
if norm_layer == "batchnorm":
channels += [BatchNorm(in_channels, bn_momentum)]
elif norm_layer == "actnorm":
channels += [ActNorm(in_channels)]
if cond_concat_dims:
c_in_channels = new_channels + cond_dim
seq_length = in_height
else:
c_in_channels = new_channels
seq_length = in_height + cond_seq_len
channels += [InvertibleConv1x1(in_channels)]
channels += [Coupling(in_channels=c_in_channels,
cond_dim=cond_dim,
out_channels=out_channels,
mid_channels=mid_channels,
num_blocks=num_blocks,
num_components=num_components,
use_attn=use_attn,
use_logmix=use_logmix,
use_transformer_nn=use_transformer_nn,
use_pos_emb=use_pos_emb,
use_rel_pos_emb=use_rel_pos_emb,
num_heads=num_heads,
seq_length=seq_length,
output_length=in_height,
concat_dims=cond_concat_dims,
drop_prob=drop_prob)]#,
#Flip()] Flip currently does not work with odd number of channels. But is it needed when we have channel mixing with 1x1convs?
checkers = []
if cond_concat_dims:
c_in_channels = new_channels + cond_dim
seq_length = in_height
else:
c_in_channels = new_channels
seq_length = in_height + cond_seq_len
for i in range(num_checkerboard):
if norm_layer == "batchnorm":
checkers += [BatchNorm(in_channels, bn_momentum)]
elif norm_layer == "actnorm":
checkers += [ActNorm(in_channels)]
checkers += [InvertibleConv1x1(in_channels)]
checkers += [Coupling(in_channels=c_in_channels,
out_channels=in_channels,
mid_channels=mid_channels,
num_blocks=num_blocks,
num_components=num_components,
use_attn=use_attn,
use_logmix=use_logmix,
use_transformer_nn=use_transformer_nn,
use_pos_emb=use_pos_emb,
use_rel_pos_emb=use_rel_pos_emb,
num_heads=num_heads,
seq_length=seq_length,
output_length=in_height,
concat_dims=cond_concat_dims,
drop_prob=drop_prob)]#,
#Flip()]
self.channels = nn.ModuleList(channels) if channels else None
self.checkers = nn.ModuleList(checkers) if checkers else None
if len(scales) <= 1:
self.next = None
else:
next_shape = (in_channels, in_height // 2, in_width)
self.next = _FlowStep(scales=scales[1:],
in_shape=next_shape,
cond_dim=2*cond_dim,
mid_channels=mid_channels,
num_blocks=num_blocks,
num_components=num_components,
use_attn=use_attn,
use_logmix=use_logmix,
use_transformer_nn=use_transformer_nn,
use_pos_emb=use_pos_emb,
use_rel_pos_emb=use_rel_pos_emb,
num_heads=num_heads,
norm_layer = norm_layer,
bn_momentum = bn_momentum,
cond_concat_dims = cond_concat_dims,
cond_seq_len = cond_seq_len,
drop_prob=drop_prob)
self.z_shape = (in_channels, in_height, in_width)
def z_dim(self):
return self.z_shape
def forward(self, x, cond, sldj, reverse=False):
if reverse:
#import pdb;pdb.set_trace()
if self.next is not None:
x = squeeze(x)
cond = squeeze(cond)
x, x_split = x.chunk(2, dim=1)
x, sldj = self.next(x, cond, sldj, reverse)
x = torch.cat((x, x_split), dim=1)
x = unsqueeze(x)
cond = unsqueeze(cond)
if self.checkers:
x = checkerboard(x)
for flow in reversed(self.checkers):
x, sldj = flow(x, cond, sldj, reverse)
x = checkerboard(x, reverse=True)
if self.channels:
x = channelwise(x)
for flow in reversed(self.channels):
x, sldj = flow(x, cond, sldj, reverse)
x = channelwise(x, reverse=True)
else:
# import pdb;pdb.set_trace()
if self.channels:
x = channelwise(x)
for flow in self.channels:
# import pdb;pdb.set_trace()
x, sldj = flow(x, cond, sldj, reverse)
# print(type(flow).__name__)
# print(x[0].std())
x = channelwise(x, reverse=True)
if self.checkers:
x = checkerboard(x)
for flow in self.checkers:
x, sldj = flow(x, cond, sldj, reverse)
x = checkerboard(x, reverse=True)
if self.next is not None:
# import pdb;pdb.set_trace()
# here we apply the flow steps but only to dimensions sampled at a lower scale. Hmm feels a bit weird
x = squeeze(x)
cond = squeeze(cond)
x, x_split = x.chunk(2, dim=1)
x, sldj = self.next(x, cond, sldj, reverse)
x = torch.cat((x, x_split), dim=1)
x = unsqueeze(x)
# print(x.std())
return x, sldj
|