Spaces:
Runtime error
Runtime error
File size: 10,254 Bytes
bc32eea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from .base_model import BaseModel
import torch.nn.functional as F
from torch import nn
import torch
#from models import constants
import numpy as np
import os
class DDCModel(nn.Module):
#class DDCModel(BaseModel):
def __init__(self, opt):
super().__init__()
#super().__init__(opt)
self.opt = opt
self.loss_names = ['ce', 'humaneness_reg', 'total']
self.metric_names = ['accuracy']
self.module_names = [''] # changed from 'model_names'
self.schedulers = []
self.net = DDCNet(opt)
self.optimizers = [torch.optim.Adam([
{'params': [param for name, param in self.net.named_parameters() if name[-4:] == 'bias'],
'lr': 2 * opt.learning_rate}, # bias parameters change quicker - no weight decay is applied
{'params': [param for name, param in self.net.named_parameters() if name[-4:] != 'bias'],
'lr': opt.learning_rate, 'weight_decay': opt.weight_decay} # filter parameters have weight decay
])]
self.loss_ce = None
self.humaneness_reg = None
self.save_dir=opt.checkpoints_dir+"/block_placement_ddc2"
self.device="cpu"
def name(self):
return "DDCNet"
def load_networks(self, epoch):
for name in self.module_names:
if isinstance(name, str):
load_filename = '%s_net_%s.pth' % (epoch, name)
load_path = os.path.join(self.save_dir, load_filename)
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
print('loading the model from %s' % load_path)
# if you are using PyTorch newer than 0.4 (e.g., built from
# GitHub source), you can remove str() on self.device
state_dict = torch.load(load_path, map_location=str(self.device))
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
#for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
# self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
# if not self.opt.gpu_ids:
# state_dict = {key[6:]: value for key, value in
# state_dict.items()} # remove data_parallel's "module."
net.load_state_dict(state_dict)
@staticmethod
def modify_commandline_options(parser, is_train):
# parser.add_argument('--num_classes', type=int, default=20)
# parser.add_argument('--output_channels', type=int, default=(4*3))
# parser.add_argument('--kernel_size', type=int, default=2)
# parser.add_argument('--bias', action='store_false')
parser.add_argument('--entropy_loss_coeff', type=float, default=0.0)
parser.add_argument('--humaneness_reg_coeff', type=float, default=0.0)
parser.add_argument('--hidden_dim', type=int, default=512)
parser.add_argument('--num_classes', type=int, default=2)
parser.add_argument('--dropout', type=float, default=0.0)
return parser
def set_input(self, data):
# move multiple samples of the same song to the second dimension and the reshape to batch dimension
input_ = data['input']
target_ = data['target']
input_shape = input_.shape
target_shape = target_.shape
# 0 batch dimension, 1 window dimension, 2 context time dimension, 3 frequency dimension, 4 mel_window_size dimension, 5 time dimension
self.input = input_.reshape((input_shape[0]*input_shape[1], input_shape[2], input_shape[3], input_shape[4], input_shape[5])).to(self.device)
self.input = self.input.permute(0,4,1,2,3) # batch/window x time x temporal_context x frequency_features x mel_window_sizes
#we collapse all the dimensions of target_ because that is the same way the output of the network is being processed for the cross entropy calculation (see self.forward)
# here, 0 is the batch dimension, 1 is the window index, 2 is the time dimension, 3 is the output channel dimension
self.target = target_.reshape((target_shape[0]*target_shape[1]*target_shape[2]*target_shape[3])).to(self.device)
def forward(self):
self.output = self.net.forward(self.input)
x = self.output
[n, l , classes] = x.size()
x = x.view(n * l, classes)
# print(x)
self.loss_ce = F.cross_entropy(x, self.target)
if self.opt.entropy_loss_coeff > 0:
S = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
S = -1.0 * S.mean()
self.loss_ce += self.opt.entropy_loss_coeff * S
self.metric_accuracy = (torch.argmax(x,1) == self.target).sum().float()/len(self.target)
#TODO: implement humaneness_reg maybe
# problem is we don't have past notes available in input, so need to do that differently
# just use output I guess :P
# step_size = self.opt.step_size
# humaneness_delta = constants.HUMAN_DELTA
# window_size = int(humaneness_delta/step_size)
#
# receptive_field = self.net.module.receptive_field
# notes = (torch.argmax(input[:,-5:,receptive_field//2-(window_size):receptive_field//2],1)==4).float()
# distance_factor = torch.tensor(np.exp(-2*np.arange(window_size,0,-1)/window_size)).float().cuda()
# if self.opt.entropy_loss_coeff > 0:
# weights = torch.tensordot(notes,distance_factor,dims=1)
# humaneness_reg = F.cross_entropy(x,torch.zeros(weights.shape).long().cuda(), reduction='none')
# humaneness_reg = torch.dot(humaneness_reg, weights)
# self.loss_humaneness_reg = humaneness_reg
# # self.loss_humaneness_reg = 0
# self.loss_total = self.loss_ce + self.opt.humaneness_reg_coeff * self.loss_humaneness_reg
# else:
# self.loss_humaneness_reg = 0
# self.loss_total = self.loss_ce
self.loss_humaneness_reg = 0
self.loss_total = self.loss_ce
def backward(self):
self.optimizers[0].zero_grad()
self.loss_total.backward()
self.optimizers[0].step()
def optimize_parameters(self):
self.set_requires_grad(self.net, requires_grad=True)
self.forward()
self.backward()
for scheduler in self.schedulers:
# step for schedulers that update after each iteration
try:
scheduler.batch_step()
except AttributeError:
pass
def prepare_input(self,y):
# dimensions of y are: features x window_sizes x time
receptive_field = 1
input_length = y.shape[-1]
y = np.concatenate((np.zeros((y.shape[0],y.shape[1],receptive_field+self.opt.time_shifts//2)),y),2)
# we also pad at the end to allow generation to be of the same length of song, by padding an amount corresponding to time_shifts
y = np.concatenate((y,np.zeros((y.shape[0],y.shape[1],self.opt.time_shifts//2))),2)
input_windowss = []
time_shifts = self.opt.time_shifts - 1
# loop that gets the input features for each of the windows, shifted by `ii`, and saves them in `input_windowss`
for ii in range(-time_shifts//2, time_shifts//2+1):
input_windows = [y[:,:,self.opt.time_shifts//2+ii:self.opt.time_shifts//2+ii+input_length]]
input_windows = torch.tensor(input_windows)
input_windows = (input_windows - input_windows.mean())/torch.abs(input_windows).max()
# input_windows = (input_windows.permute(3,0,1,2) - input_windows.mean(-1)).permute(1,2,3,0)
input_windowss.append(input_windows.float())
input = torch.stack(input_windowss,dim=1).float()
input_shape = input.shape
input = input.to(self.device)
input = input.permute(0,4,1,2,3) # batch/window x time x temporal_context x frequency_features x mel_window_sizes
return input
def generate(self,y):
input = self.prepare_input(y)
if self.opt.cuda:
with torch.no_grad():
self.net.module.eval()
return F.softmax(self.net.module.forward(input)[0],2)
else:
with torch.no_grad():
self.net.eval()
return F.softmax(self.net.forward(input)[0],2)
def generate_features(self,y):
input = self.prepare_input(y)
if self.opt.cuda:
with torch.no_grad():
self.net.module.eval()
logits, h = self.net.module.forward(input)
return h, F.softmax(logits,2)
else:
with torch.no_grad():
self.net.eval()
logits, h = self.net.forward(input)
return h, F.softmax(logits,2)
class DDCNet(nn.Module):
def __init__(self,opt):
super(DDCNet, self).__init__()
self.conv1 = nn.Conv2d(3, 20, (7,3)) #assumes CHW format
# self.pool = nn.MaxPool1d(3, 3)
self.pool = nn.MaxPool2d((1,3), (1,3))
self.conv2 = nn.Conv2d(20, 20, 3)
# self.fc1 = nn.Linear(20 * 9, 256)
# self.fc2 = nn.Linear(256, 128)
self.lstm = nn.LSTM(input_size=20*7*8, hidden_size=opt.hidden_dim, num_layers=2, batch_first=True) # Define the LSTM
self.hidden_to_state = nn.Linear(opt.hidden_dim,
opt.num_classes)
def forward(self, x):
# batch/window x time x temporal_context x frequency_features x mel_window_sizes
# print(x.shape)
[N,L,deltaT,dim,winsizes] = x.shape
x = x.reshape(N*L,deltaT,dim,winsizes)
x = x.permute(0,3,1,2)
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
# print(x.shape)
x = x.reshape(N,L,20*7*8) # batch x time x CNN_features
# x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
lstm_out, _ = self.lstm(x)
logits = self.hidden_to_state(lstm_out)
# print(logits.shape)
return logits, lstm_out
|