File size: 7,441 Bytes
2d5fdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from analysis.pymo.parsers import BVHParser
from analysis.pymo.data import Joint, MocapData
from analysis.pymo.preprocessing import *
from analysis.pymo.viz_tools import *
from analysis.pymo.writers import *
import analysis.pymo
import imp;imp.reload(analysis.pymo)
import imp;imp.reload(analysis.pymo.preprocessing)
from sklearn.pipeline import Pipeline
from analysis.pymo.rotation_tools import euler2expmap

import matplotlib.pyplot as plt

#%%
p = BVHParser()

# f="data/dance_full/aistpp_bvh/bvh/gWA_sFM_cAll_d26_mWA4_ch12.bvh"
# f="data/dance_full/shadermotion_data2_retarget/bvh/VRChat_Dance_2.bvh"
# f="data/dance_full/shadermotion_data2_retarget/bvh/VRChat_Dance_8.bvh"
# f="data/dance_full/kth_streetdance_data/bvh/Streetdance_001.bvh"
# f="data/dance_full/shadermotion_justdance/bvh/justdance_0.bvh"
# f="data/dance_full/vibe_dance/bvh/Take1.bvh"
# f="data/dance_full/shadermotion_data2_retarget/bvh/VRChat_Dance_0.bvh"
f1="data/dance_full/kth_streetdance_data/bvh/Streetdance_001.bvh"
f2="data/dance_full/shadermotion_justdance/bvh/justdance_0.bvh"
# f2="data/dance_full/shadermotion_justdance/bvh/justdance_1.bvh"
f1="/media/guillefix/SAMSUNG/mt-lightning-stuff/dance_full/shadermotion_justdance/bvh/justdance_1.bvh"
# f="data/dance_full/tmp/bvh/VRChat_Dance_0.bvh"
# f="data/dance_full/testing/VRChat_Dance_0.bvh"
# f="data/dance_full/tmp/bvh/VRChat_Dance_0.bvh"
# f="data/dance_full/testing/VRChat_Dance_0.bvh"

data = p.parse(f1)
# data2 = p.parse(f2)

len(data.skeleton.items())
#%%

# print_skel(data)

# f="analysis/mixamo.bvh"
#
# data = p.parse(f)
#
# print_skel(data)
data.values["LeftFoot_Zrotation"][2]
data2.values["LeftFoot_Zrotation"][2]
data2.values["LeftFoot_Zrotation"] = data.values["LeftFoot_Zrotation"].values[:13250]
data2.values["LeftFoot_Xrotation"] = data.values["LeftFoot_Xrotation"].values[:13250]
data2.values["LeftFoot_Yrotation"] = data.values["LeftFoot_Yrotation"].values[:13250]
euler2expmap((data.values["LeftFoot_Zrotation"][1], data.values["LeftFoot_Xrotation"][1], data.values["LeftFoot_Yrotation"][1]), 'ZXY', True)
e1=euler2expmap((data2.values["LeftFoot_Zrotation"][0], data2.values["LeftFoot_Xrotation"][0], data2.values["LeftFoot_Yrotation"][0]), 'ZXY', True)
e2=euler2expmap((data2.values["LeftFoot_Zrotation"][1], data2.values["LeftFoot_Xrotation"][1], data2.values["LeftFoot_Yrotation"][1]), 'ZXY', True)
e3=euler2expmap((data2.values["LeftFoot_Zrotation"][2], data2.values["LeftFoot_Xrotation"][2], data2.values["LeftFoot_Yrotation"][2]), 'ZXY', True)

np.linalg.norm(e1) - np.linalg.norm(e2)
np.linalg.norm(e2) - np.linalg.norm(e3)
(2*np.pi - np.linalg.norm(e2)) - (np.linalg.norm(e3))

data.values["LeftFoot_Zrotation"].mean()
data2.values["LeftFoot_Zrotation"].mean()
list(data2.values.std())
list(data2.values.mean())
list(data.values.mean())

data.values

data.skeleton

#%%

# fps=60
# p = BVHParser()
data_pipe = Pipeline([
    # ('dwnsampl', DownSampler(tgt_fps=fps,  keep_all=False)),
    ('mir', Mirror(axis='X', append=True)),
    ('root', RootTransformer('pos_rot_deltas')),
    ('jtsel', JointSelector(['Spine', 'Spine1', 'Neck', 'Head', 'RightShoulder', 'RightArm', 'RightForeArm', 'RightHand', 'LeftShoulder', 'LeftArm', 'LeftForeArm', 'LeftHand', 'RightUpLeg', 'RightLeg', 'RightFoot', 'RightToeBase', 'LeftUpLeg', 'LeftLeg', 'LeftFoot', 'LeftToeBase'], include_root=True)),
    # ('jtsel', JointSelector(['Spine1', 'Spine', 'Neck', 'Head', 'RightShoulder', 'RightArm', 'RightForeArm', 'RightHand', 'LeftShoulder', 'LeftArm', 'LeftForeArm', 'LeftHand', 'RightUpLeg', 'RightLeg', 'RightFoot', 'RightToeBase', 'LeftUpLeg', 'LeftLeg', 'LeftFoot', 'LeftToeBase'], include_root=True)),
    # ('exp', MocapParameterizer('position')),
    ('exp', MocapParameterizer('expmap')),
    ('cnst', ConstantsRemover(only_cols=["Hips_Xposition", "Hips_Zposition"])),
    # ('np', Numpyfier())
])


out_data = data_pipe.fit_transform([data])
out_data2 = data_pipe.fit_transform([data2])
out_data[0].values.columns.size
out_data2[0].values.columns.size

out_data[0].values.columns[17]
out_data[0].values
out_data2[0].values
out_data2[0].values["LeftFoot_beta"].std()
out_data2[0].values["LeftFoot_beta"].max()
out_data2[0].values["LeftFoot_beta"].mean()
out_data[0].values["LeftFoot_beta"].std()
out_data[0].values["LeftFoot_beta"].max()
out_data[0].values["LeftFoot_beta"].mean()
(out_data[0].values["LeftFoot_alpha"]**2 + out_data[0].values["LeftFoot_beta"]**2 + out_data[0].values["LeftFoot_gamma"]**2).mean()
(out_data2[0].values["LeftFoot_alpha"]**2 + out_data2[0].values["LeftFoot_beta"]**2 + out_data2[0].values["LeftFoot_gamma"]**2).mean()
out_data[0].values["LeftFoot_gamma"][1]
out_data2[0].values["LeftFoot_gamma"][3]

(out_data[0].values["RightFoot_alpha"]**2 + out_data[0].values["RightFoot_beta"]**2 + out_data[0].values["RightFoot_gamma"]**2).mean()
(out_data2[0].values["RightFoot_alpha"][10:]**2 + out_data2[0].values["RightFoot_beta"][10:]**2 + out_data2[0].values["RightFoot_gamma"][10:]**2).mean()
(out_data2[0].values["RightFoot_alpha"][10:]**2 + out_data2[0].values["RightFoot_beta"][10:]**2 + out_data2[0].values["RightFoot_gamma"][10:]**2).diff().max()

np.diff(out_data2[0].values["LeftFoot_beta"]).max()
np.diff(out_data[0].values["LeftFoot_beta"]).max()

out_data[0].shape
inv_data = data_pipe.inverse_transform(out_data)
inv_data[0] == data

data.values
inv_data[0].values

# out_data[0][0]
# out_data[0].values.columns

# video_file = "analysis/tmp/Streetdance_001.mp4"
# video_file = "analysis/tmp/sm01.mp4"
video_file = "analysis/tmp/sm01b.mp4"
render_mp4(out_data[0], video_file, axis_scale=3, elev=45, azim=45)
# render_mp4(out_data[0], video_file, axis_scale=100, elev=45, azim=45)
# audio_file = "data/dance_full/kth_streetdance_data/music/Streetdance_001.wav"
# audio_file = "data/dance_full/vibe_dance/audio/audio_001.wav"
# audio_file = "data/dance_full/shadermotion_data2_retarget/audio/VRChat\ Dance_0.wav"
audio_file = "data/dance_full/testing/VRChat_Dance_0.mp3"
# audio_file = "data/dance_full/tmp/audio/VRChat\ Dance_0.wav"
from analysis.visualization.utils import generate_video_from_images, join_video_and_audio
join_video_and_audio(video_file, audio_file, 0)

yposs = list(filter(lambda x: x.split("_")[1]=="Yposition", out_data[0].values.columns))

out_data[0].values[yposs].iloc[100:].min().min()
out_data[0].values[yposs].min()
out_data[0].values[yposs].iloc[10:]
out_data[0].values["Hips_Yposition"].iloc[52]

# out_data[0].values
out_data.shape
out_data[0,:10,-1]

bvh_data=data_pipe.inverse_transform(out_data)

writer = BVHWriter()
with open('analysis/tmp/test.bvh','w') as f:
    writer.write(bvh_data[0], f)


####
last_index = data.values[(data.values["Hips_Xposition"] > 100000) | (data.values["Hips_Xposition"] < -100000)].index[-1]

data.values.loc[last_index:].iloc[1:]


##################

import numpy as np

a = np.load("inference/generated_1/transflower_expmap_finetune2/predicted_mods/aistpp_gBR_sBM_cAll_d04_mBR0_ch10.expmap_scaled_20.generated.npy")

a[:2,0,-9:]

########################
#%%

# import pickle
import joblib as jl
data_pipe = jl.load(open("data/dance_combined/motion_expmap_cr_scaled_20_data_pipe.sav", "rb"))

data = np.load("data/dance_combined/justdance_0_mirrored.bvh_expmap_cr.npy")
data = np.load("data/dance_combined/justdance_0.bvh_expmap_cr.npy")

bvh_data=data_pipe.inverse_transform([data])

writer = BVHWriter()
with open('analysis/tmp/test.bvh','w') as f:
    writer.write(bvh_data[0], f)