Spaces:
Runtime error
Runtime error
File size: 7,441 Bytes
2d5fdd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from analysis.pymo.parsers import BVHParser
from analysis.pymo.data import Joint, MocapData
from analysis.pymo.preprocessing import *
from analysis.pymo.viz_tools import *
from analysis.pymo.writers import *
import analysis.pymo
import imp;imp.reload(analysis.pymo)
import imp;imp.reload(analysis.pymo.preprocessing)
from sklearn.pipeline import Pipeline
from analysis.pymo.rotation_tools import euler2expmap
import matplotlib.pyplot as plt
#%%
p = BVHParser()
# f="data/dance_full/aistpp_bvh/bvh/gWA_sFM_cAll_d26_mWA4_ch12.bvh"
# f="data/dance_full/shadermotion_data2_retarget/bvh/VRChat_Dance_2.bvh"
# f="data/dance_full/shadermotion_data2_retarget/bvh/VRChat_Dance_8.bvh"
# f="data/dance_full/kth_streetdance_data/bvh/Streetdance_001.bvh"
# f="data/dance_full/shadermotion_justdance/bvh/justdance_0.bvh"
# f="data/dance_full/vibe_dance/bvh/Take1.bvh"
# f="data/dance_full/shadermotion_data2_retarget/bvh/VRChat_Dance_0.bvh"
f1="data/dance_full/kth_streetdance_data/bvh/Streetdance_001.bvh"
f2="data/dance_full/shadermotion_justdance/bvh/justdance_0.bvh"
# f2="data/dance_full/shadermotion_justdance/bvh/justdance_1.bvh"
f1="/media/guillefix/SAMSUNG/mt-lightning-stuff/dance_full/shadermotion_justdance/bvh/justdance_1.bvh"
# f="data/dance_full/tmp/bvh/VRChat_Dance_0.bvh"
# f="data/dance_full/testing/VRChat_Dance_0.bvh"
# f="data/dance_full/tmp/bvh/VRChat_Dance_0.bvh"
# f="data/dance_full/testing/VRChat_Dance_0.bvh"
data = p.parse(f1)
# data2 = p.parse(f2)
len(data.skeleton.items())
#%%
# print_skel(data)
# f="analysis/mixamo.bvh"
#
# data = p.parse(f)
#
# print_skel(data)
data.values["LeftFoot_Zrotation"][2]
data2.values["LeftFoot_Zrotation"][2]
data2.values["LeftFoot_Zrotation"] = data.values["LeftFoot_Zrotation"].values[:13250]
data2.values["LeftFoot_Xrotation"] = data.values["LeftFoot_Xrotation"].values[:13250]
data2.values["LeftFoot_Yrotation"] = data.values["LeftFoot_Yrotation"].values[:13250]
euler2expmap((data.values["LeftFoot_Zrotation"][1], data.values["LeftFoot_Xrotation"][1], data.values["LeftFoot_Yrotation"][1]), 'ZXY', True)
e1=euler2expmap((data2.values["LeftFoot_Zrotation"][0], data2.values["LeftFoot_Xrotation"][0], data2.values["LeftFoot_Yrotation"][0]), 'ZXY', True)
e2=euler2expmap((data2.values["LeftFoot_Zrotation"][1], data2.values["LeftFoot_Xrotation"][1], data2.values["LeftFoot_Yrotation"][1]), 'ZXY', True)
e3=euler2expmap((data2.values["LeftFoot_Zrotation"][2], data2.values["LeftFoot_Xrotation"][2], data2.values["LeftFoot_Yrotation"][2]), 'ZXY', True)
np.linalg.norm(e1) - np.linalg.norm(e2)
np.linalg.norm(e2) - np.linalg.norm(e3)
(2*np.pi - np.linalg.norm(e2)) - (np.linalg.norm(e3))
data.values["LeftFoot_Zrotation"].mean()
data2.values["LeftFoot_Zrotation"].mean()
list(data2.values.std())
list(data2.values.mean())
list(data.values.mean())
data.values
data.skeleton
#%%
# fps=60
# p = BVHParser()
data_pipe = Pipeline([
# ('dwnsampl', DownSampler(tgt_fps=fps, keep_all=False)),
('mir', Mirror(axis='X', append=True)),
('root', RootTransformer('pos_rot_deltas')),
('jtsel', JointSelector(['Spine', 'Spine1', 'Neck', 'Head', 'RightShoulder', 'RightArm', 'RightForeArm', 'RightHand', 'LeftShoulder', 'LeftArm', 'LeftForeArm', 'LeftHand', 'RightUpLeg', 'RightLeg', 'RightFoot', 'RightToeBase', 'LeftUpLeg', 'LeftLeg', 'LeftFoot', 'LeftToeBase'], include_root=True)),
# ('jtsel', JointSelector(['Spine1', 'Spine', 'Neck', 'Head', 'RightShoulder', 'RightArm', 'RightForeArm', 'RightHand', 'LeftShoulder', 'LeftArm', 'LeftForeArm', 'LeftHand', 'RightUpLeg', 'RightLeg', 'RightFoot', 'RightToeBase', 'LeftUpLeg', 'LeftLeg', 'LeftFoot', 'LeftToeBase'], include_root=True)),
# ('exp', MocapParameterizer('position')),
('exp', MocapParameterizer('expmap')),
('cnst', ConstantsRemover(only_cols=["Hips_Xposition", "Hips_Zposition"])),
# ('np', Numpyfier())
])
out_data = data_pipe.fit_transform([data])
out_data2 = data_pipe.fit_transform([data2])
out_data[0].values.columns.size
out_data2[0].values.columns.size
out_data[0].values.columns[17]
out_data[0].values
out_data2[0].values
out_data2[0].values["LeftFoot_beta"].std()
out_data2[0].values["LeftFoot_beta"].max()
out_data2[0].values["LeftFoot_beta"].mean()
out_data[0].values["LeftFoot_beta"].std()
out_data[0].values["LeftFoot_beta"].max()
out_data[0].values["LeftFoot_beta"].mean()
(out_data[0].values["LeftFoot_alpha"]**2 + out_data[0].values["LeftFoot_beta"]**2 + out_data[0].values["LeftFoot_gamma"]**2).mean()
(out_data2[0].values["LeftFoot_alpha"]**2 + out_data2[0].values["LeftFoot_beta"]**2 + out_data2[0].values["LeftFoot_gamma"]**2).mean()
out_data[0].values["LeftFoot_gamma"][1]
out_data2[0].values["LeftFoot_gamma"][3]
(out_data[0].values["RightFoot_alpha"]**2 + out_data[0].values["RightFoot_beta"]**2 + out_data[0].values["RightFoot_gamma"]**2).mean()
(out_data2[0].values["RightFoot_alpha"][10:]**2 + out_data2[0].values["RightFoot_beta"][10:]**2 + out_data2[0].values["RightFoot_gamma"][10:]**2).mean()
(out_data2[0].values["RightFoot_alpha"][10:]**2 + out_data2[0].values["RightFoot_beta"][10:]**2 + out_data2[0].values["RightFoot_gamma"][10:]**2).diff().max()
np.diff(out_data2[0].values["LeftFoot_beta"]).max()
np.diff(out_data[0].values["LeftFoot_beta"]).max()
out_data[0].shape
inv_data = data_pipe.inverse_transform(out_data)
inv_data[0] == data
data.values
inv_data[0].values
# out_data[0][0]
# out_data[0].values.columns
# video_file = "analysis/tmp/Streetdance_001.mp4"
# video_file = "analysis/tmp/sm01.mp4"
video_file = "analysis/tmp/sm01b.mp4"
render_mp4(out_data[0], video_file, axis_scale=3, elev=45, azim=45)
# render_mp4(out_data[0], video_file, axis_scale=100, elev=45, azim=45)
# audio_file = "data/dance_full/kth_streetdance_data/music/Streetdance_001.wav"
# audio_file = "data/dance_full/vibe_dance/audio/audio_001.wav"
# audio_file = "data/dance_full/shadermotion_data2_retarget/audio/VRChat\ Dance_0.wav"
audio_file = "data/dance_full/testing/VRChat_Dance_0.mp3"
# audio_file = "data/dance_full/tmp/audio/VRChat\ Dance_0.wav"
from analysis.visualization.utils import generate_video_from_images, join_video_and_audio
join_video_and_audio(video_file, audio_file, 0)
yposs = list(filter(lambda x: x.split("_")[1]=="Yposition", out_data[0].values.columns))
out_data[0].values[yposs].iloc[100:].min().min()
out_data[0].values[yposs].min()
out_data[0].values[yposs].iloc[10:]
out_data[0].values["Hips_Yposition"].iloc[52]
# out_data[0].values
out_data.shape
out_data[0,:10,-1]
bvh_data=data_pipe.inverse_transform(out_data)
writer = BVHWriter()
with open('analysis/tmp/test.bvh','w') as f:
writer.write(bvh_data[0], f)
####
last_index = data.values[(data.values["Hips_Xposition"] > 100000) | (data.values["Hips_Xposition"] < -100000)].index[-1]
data.values.loc[last_index:].iloc[1:]
##################
import numpy as np
a = np.load("inference/generated_1/transflower_expmap_finetune2/predicted_mods/aistpp_gBR_sBM_cAll_d04_mBR0_ch10.expmap_scaled_20.generated.npy")
a[:2,0,-9:]
########################
#%%
# import pickle
import joblib as jl
data_pipe = jl.load(open("data/dance_combined/motion_expmap_cr_scaled_20_data_pipe.sav", "rb"))
data = np.load("data/dance_combined/justdance_0_mirrored.bvh_expmap_cr.npy")
data = np.load("data/dance_combined/justdance_0.bvh_expmap_cr.npy")
bvh_data=data_pipe.inverse_transform([data])
writer = BVHWriter()
with open('analysis/tmp/test.bvh','w') as f:
writer.write(bvh_data[0], f)
|