File size: 7,145 Bytes
2d5fdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# coding=utf-8
# Copyright 2020 The Google AI Perception Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Estimate AIST++ SMPL-format Motion."""
import os
import pickle

from absl import app
from absl import flags
from absl import logging
from aist_plusplus.loader import AISTDataset
import numpy as np
from smplx import SMPL
import torch

FLAGS = flags.FLAGS
flags.DEFINE_string(
    'anno_dir',
    '/usr/local/google/home/ruilongli/data/public/aist_plusplus_final/',
    'input local dictionary for AIST++ annotations.')
flags.DEFINE_string(
    'smpl_dir',
    '/usr/local/google/home/ruilongli/data/SMPL/',
    'input local dictionary that stores SMPL data.')
flags.DEFINE_string(
    'save_dir',
    '/usr/local/google/home/ruilongli/data/public/aist_plusplus_final/motions/',
    'output local dictionary that stores AIST++ SMPL-format motion data.')
flags.DEFINE_list(
    'sequence_names',
    None,
    'list of sequence names to be processed. None means to process all.')
flags.DEFINE_string(
    'save_dir_gcs',
    None,
    'output GCS directory.')
np.random.seed(0)
torch.manual_seed(0)


def unify_joint_mappings(dataset='openpose25'):
  """Unify different joint definations.

  Output unified defination:
      ['Nose',
      'RShoulder', 'RElbow', 'RWrist',
      'LShoulder', 'LElbow', 'LWrist',
      'RHip', 'RKnee', 'RAnkle',
      'LHip', 'LKnee', 'LAnkle',
      'REye', 'LEye',
      'REar', 'LEar',
      'LBigToe', 'LHeel',
      'RBigToe', 'RHeel',]

  Args:
    dataset: `openpose25`, `coco`(17) and `smpl`.
  Returns:
    a list of indexs that maps the joints to a unified defination.
  """
  if dataset == 'openpose25':
    return np.array([
        0,
        2, 3, 4,
        5, 6, 7,
        9, 10, 11,
        12, 13, 14,
        15, 16,
        17, 18,
        19, 21,
        22, 24,
    ], dtype=np.int32)
  elif dataset == 'smpl':
    return np.array([
        24,
        17, 19, 21,
        16, 18, 20,
        2, 5, 8,
        1, 4, 7,
        25, 26,
        27, 28,
        29, 31,
        32, 34,
    ], dtype=np.int32)
  elif dataset == 'coco':
    return np.array([
        0,
        5, 7, 9,
        6, 8, 10,
        11, 13, 15,
        12, 14, 16,
        1, 2,
        3, 4,
    ], dtype=np.int32)
  else:
    raise ValueError(f'{dataset} is not supported')


class SMPLRegressor:
  """SMPL fitting based on 3D keypoints."""

  def __init__(self, smpl_model_path, smpl_model_gener='MALE'):
    # Fitting hyper-parameters
    self.base_lr = 100.0
    self.niter = 10000
    self.metric = torch.nn.MSELoss()
    self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
    self.smpl_model_path = smpl_model_path
    self.smpl_model_gender = smpl_model_gener

    # Mapping to unify joint definations
    self.joints_mapping_smpl = unify_joint_mappings(dataset='smpl')

  def get_optimizer(self, smpl, step, base_lr):
    """Setup opimizer with a warm up learning rate."""
    if step < 100:
      optimizer = torch.optim.SGD([
          {'params': [smpl.transl], 'lr': base_lr},
          {'params': [smpl.scaling], 'lr': base_lr * 0.01},
          {'params': [smpl.global_orient], 'lr': 0.0},
          {'params': [smpl.body_pose], 'lr': 0.0},
          {'params': [smpl.betas], 'lr': 0.0},
      ])

    elif step < 400:
      optimizer = torch.optim.SGD([
          {'params': [smpl.transl], 'lr': base_lr},
          {'params': [smpl.scaling], 'lr': base_lr * 0.01},
          {'params': [smpl.global_orient], 'lr': base_lr * 0.001},
          {'params': [smpl.body_pose], 'lr': 0.0},
          {'params': [smpl.betas], 'lr': 0.0},
      ])

    else:
      optimizer = torch.optim.SGD([
          {'params': [smpl.transl], 'lr': base_lr},
          {'params': [smpl.scaling], 'lr': base_lr * 0.01},
          {'params': [smpl.global_orient], 'lr': base_lr * 0.001},
          {'params': [smpl.body_pose], 'lr': base_lr * 0.001},
          {'params': [smpl.betas], 'lr': 0.0},
      ])
    return optimizer

  def fit(self, keypoints3d, dtype='coco', verbose=True):
    """Run fitting to optimize the SMPL parameters."""
    assert dtype == 'coco', 'only support coco format for now.'
    assert len(keypoints3d.shape) == 3, 'input shape should be [N, njoints, 3]'
    mapping_target = unify_joint_mappings(dataset=dtype)
    keypoints3d = keypoints3d[:, mapping_target, :]
    keypoints3d = torch.from_numpy(keypoints3d).float().to(self.device)
    batch_size, njoints = keypoints3d.shape[0:2]

    # Init learnable smpl model
    smpl = SMPL(
        model_path=self.smpl_model_path,
        gender=self.smpl_model_gender,
        batch_size=batch_size).to(self.device)

    # Start fitting
    for step in range(self.niter):
      optimizer = self.get_optimizer(smpl, step, self.base_lr)

      output = smpl.forward()
      joints = output.joints[:, self.joints_mapping_smpl[:njoints], :]
      loss = self.metric(joints, keypoints3d)

      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

      if verbose and step % 10 == 0:
        logging.info(f'step {step:03d}; loss {loss.item():.3f};')

    # Return results
    return smpl, loss.item()


def main(_):
  aist_dataset = AISTDataset(FLAGS.anno_dir)
  smpl_regressor = SMPLRegressor(FLAGS.smpl_dir, 'MALE')

  if FLAGS.sequence_names:
    seq_names = FLAGS.sequence_names
  else:
    seq_names = aist_dataset.mapping_seq2env.keys()

  for seq_name in seq_names:
    logging.info('processing %s', seq_name)

    # load 3D keypoints
    keypoints3d = AISTDataset.load_keypoint3d(
        aist_dataset.keypoint3d_dir, seq_name, use_optim=True)

    # SMPL fitting
    smpl, loss = smpl_regressor.fit(keypoints3d, dtype='coco', verbose=True)

    # One last time forward
    with torch.no_grad():
      _ = smpl.forward()
    body_pose = smpl.body_pose.detach().cpu().numpy()
    global_orient = smpl.global_orient.detach().cpu().numpy()
    smpl_poses = np.concatenate([global_orient, body_pose], axis=1)
    smpl_scaling = smpl.scaling.detach().cpu().numpy()
    smpl_trans = smpl.transl.detach().cpu().numpy()

    os.makedirs(FLAGS.save_dir, exist_ok=True)
    motion_file = os.path.join(FLAGS.save_dir, f'{seq_name}.pkl')
    with open(motion_file, 'wb') as f:
      pickle.dump({
          'smpl_poses': smpl_poses,
          'smpl_scaling': smpl_scaling,
          'smpl_trans': smpl_trans,
          'smpl_loss': loss,
      }, f, protocol=pickle.HIGHEST_PROTOCOL)

  # upload results to GCS
  if FLAGS.save_dir_gcs:
    import gcs_utils
    gcs_utils.upload_files_to_gcs(
        local_folder=FLAGS.save_dir,
        gcs_path=FLAGS.save_dir_gcs)

if __name__ == '__main__':
  app.run(main)