File size: 6,540 Bytes
2d5fdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import pandas as pd
import numpy as np
import torch
from analysis.aistplusplus_api.convert_mat_to_euler import rot_mats_to_eulers
import glob
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
%matplotlib
import pickle

# seqs = [x[:-1].split("_") for x in open("analysis/base_filenames.txt", "r").readlines()]
seqs = [x[:-1] for x in open("analysis/base_filenames.txt", "r").readlines()]

# seqs = [{"genre":x[0], "situation":x[1], "camera":x[2], "dancer":x[3], "musicId":x[4], "choreo":x[5]} for x in seqs]
#
# df = pd.DataFrame(seqs)

data_dir="data/scaled_features/"

# data = np.load(data_dir + seqs[10]+".joint_angles_scaled.npy")
def get_scaling(seq_id):
    smpl_thing = pickle.load(open("../aistpp_data/aist_plusplus_final/motions/"+seq_id+".pkl", "rb"))
    smpl_poses = smpl_thing['smpl_poses']
    smpl_scaling = smpl_thing['smpl_scaling']
    smpl_trans = smpl_thing['smpl_trans']
    return smpl_scaling[0]

max_deriv = lambda seq: np.diff(np.load(data_dir + seq+".joint_angles_scaled.npy")).max()
seqs = sorted(seqs, key=max_deriv)
seqs2 = sorted(seqs, key=lambda seq: get_scaling(seq))

#%%

seqs2[-35]
get_scaling(seqs2[-35])

to_check_coz_big = []
with open("ones_to_check.txt", "a") as f:
    for seq in list(reversed(seqs2))[33:]:
        if get_scaling(seq) > 96:
            to_check_coz_big.append(seq)
            # seq = seq.split("_")
            # seq[2] = "c01"
            # seq = "_".join(seq)
            # f.writelines(seq+"\n")

with open("ones_to_check2.txt", "w") as f:
    for seq in list(reversed(seqs))[14:]:
        if max_deriv(seq) > 20 and seq not in to_check_coz_big:
            seq = seq.split("_")
            seq[2] = "c01"
            seq = "_".join(seq)
            f.writelines(seq+"\n")

np.diff(np.load(data_dir + seqs[-15]+".joint_angles_scaled.npy")).max()

data = np.load(data_dir + seqs[-11]+".joint_angles_scaled.npy")

#%%

# with open("bad_ones.txt", "w") as f:
#     for seq in [x.split("/")[-1][:-4] for x in glob.glob("../aistplusplus_api/visualization/bad/*")]:
#         seq = seq.split("_")
#         seq[2] = "cAll"
#         seq = "_".join(seq)
#         f.writelines(seq+"\n")
#         f.writelines(seq+"\n")

train_ones = [x[:-1] for x in open("analysis/aistpp_base_filenames_train_filtered.txt", "r").readlines()]
bad_ones = [x[:-1] for x in open("analysis/aistpp_bad_ones.txt", "r").readlines()]


with open("analysis/aistpp_base_filenames_train_filtered.txt", "w") as f:
    for line in train_ones:
        if line not in bad_ones:
            f.writelines(line+"\n")

#%%

# np.diff(data).max()


plt.plot(np.diff(data[:900]).max(1))
# plt.plot(np.diff(data).mean(1))

#gHO_sFM_cAll_d20_mHO5_ch13 from 350

#gBR_sFM_cAll_d05_mBR4_ch13 up to 900

#gWA_sBM_cAll_d27_mWA4_ch08 except the end

#%%

# seqs.remove(max_diff_seq)

max_diff = 0
max_diff_seq = ""
for seq in seqs:
    data = np.load(data_dir + seq+".joint_angles_scaled.npy")
    diff = np.diff(data).max()
    if diff > max_diff:
        max_diff = diff
        max_diff_seq = seq

max_diff
max_diff_seq
data = np.load(data_dir + max_diff_seq+".joint_angles_scaled.npy")

#%%
#
# plt.ion()
# plt.show()
# for i in range(data.shape[1]):
#     plt.gca().clear()
#     plt.plot(data[:,i])
#     plt.draw()
#     plt.pause(0.03)
#
# plt.plot(np.diff(data[:,0]))

transform = pickle.load(open(data_dir+"/"+"pkl_joint_angles_mats_scaler"+'.pkl', "rb"))
unscaled_data = transform.inverse_transform(data)

unscaled_data.shape

smpl_thing = rot_mats_to_eulers(np.expand_dims(unscaled_data, 1))
smpl_poses,smpl_scaling,smpl_trans = smpl_thing['smpl_poses'], smpl_thing['smpl_scaling'], smpl_thing['smpl_trans']

#%%

import glob, os
import pickle
# for file in glob.glob("../aistpp_data/aist_plusplus_final/motions/*"):
def get_scaling(seq_id):
    smpl_thing = pickle.load(open("../aistpp_data/aist_plusplus_final/motions/"+seq_id+".pkl", "rb"))
    smpl_poses = smpl_thing['smpl_poses']
    smpl_scaling = smpl_thing['smpl_scaling']
    smpl_trans = smpl_thing['smpl_trans']
    return smpl_scaling[0]

# smpl_thing['smpl_poses'], smpl_thing['smpl_scaling'], smpl_thing['smpl_trans'] =

#%%
from analysis.utils import run_bash_command
from smplx import SMPL
import os

audio_file = "a"
seq_id = "a"
output_folder = "analysis/tmp"
root_dir="analysis/tmp"

def delete_images():
    files = glob.glob(root_dir+'/img/*')
    for f in files:
        os.remove(f)

smpl = SMPL(model_path="../aistplusplus_api", gender='MALE', batch_size=1)
output = smpl.forward(
    global_orient=torch.from_numpy(smpl_poses[:, 0:1]).float(),
    body_pose=torch.from_numpy(smpl_poses[:, 1:]).float(),
    transl=torch.from_numpy(smpl_trans).float(),
    scaling=torch.from_numpy(smpl_scaling.reshape(1, 1)).float(),
    )
keypoints3d = output.joints.detach().numpy()
keypoints3d = keypoints3d[:,:24] # the body joints (ignoring the extra head, feet and hand bones added onto it here https://github.com/vchoutas/smplx/blob/7547ee6656b942a68a97604d0cf7b6b834fad9eb/smplx/vertex_joint_selector.py)
# that file takes the position of the vertices corresponding to certain joints
# print(keypoints3d)

# Plot as images
delete_images()
fig = plt.figure()
plt.ion()
plt.show()
ax = Axes3D(fig)
# print(keypoints3d.shape)
# print(keypoints3d[0,:,2])
ax.scatter(keypoints3d[0,:,2], keypoints3d[0,:,0], keypoints3d[0,:,1])
plt.xlim([-100,100])
plt.ylim([-100,100])
ax.set_zlim([75,275])
ax.view_init(0, 0)
plt.draw()
plt.pause(0.001)

for i in range(1,len(keypoints3d)):
    print(i)
    ax.clear()
    ax.scatter(keypoints3d[i,:,2], keypoints3d[i,:,0], keypoints3d[i,:,1])
    plt.xlim([-100,100])
    plt.ylim([-100,100])
    ax.set_zlim([75,275])
    ax.view_init(0, 0)
    plt.draw()
    plt.pause(0.001)
    plt.savefig(root_dir+"/img/img_"+str(i)+".png")

video_file = output_folder+seq_id+".mp4"
video_file2 = output_folder+seq_id+"_music.mp4"
bash_command = "ffmpeg -y -r 60 -f image2 -s 1920x1080 -i "+root_dir+"/img/img_%d.png -vcodec libx264 -crf 25  -pix_fmt yuv420p "+video_file
run_bash_command(bash_command)
trim_audio=2
if audio_file is not None:
    new_audio_file = output_folder+seq_id+".mp3"
    bash_command = "ffprobe -v 0 -show_entries format=duration -of compact=p=0:nk=1 "+video_file
    duration = float(run_bash_command(bash_command))
    bash_command = "ffmpeg -y -i "+audio_file+" -ss "+str(trim_audio)+" -t "+str(duration)+" "+new_audio_file
    run_bash_command(bash_command)
    bash_command = "ffmpeg -y -i "+video_file+" -i "+new_audio_file+" "+video_file2
    run_bash_command(bash_command)