Spaces:
Build error
Build error
File size: 25,108 Bytes
efe5745 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
from diffusers import UnCLIPPipeline, DiffusionPipeline
import torch
import os
from lora_diffusion.cli_lora_pti import *
from lora_diffusion.lora import *
from PIL import Image
import numpy as np
import json
from lora_dataset import PivotalTuningDatasetCapation as PVD
UNET_DEFAULT_TARGET_REPLACE = {"CrossAttention", "Attention", "GEGLU"}
UNET_EXTENDED_TARGET_REPLACE = {"ResnetBlock2D", "CrossAttention", "Attention", "GEGLU"}
TEXT_ENCODER_DEFAULT_TARGET_REPLACE = {"CLIPAttention"}
TEXT_ENCODER_EXTENDED_TARGET_REPLACE = {"CLIPAttention"}
DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE
def save_all(
unet,
text_encoder,
save_path,
placeholder_token_ids=None,
placeholder_tokens=None,
save_lora=True,
save_ti=True,
target_replace_module_text=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
target_replace_module_unet=DEFAULT_TARGET_REPLACE,
safe_form=True,
):
if not safe_form:
# save ti
if save_ti:
ti_path = ti_lora_path(save_path)
learned_embeds_dict = {}
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
print(
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
learned_embeds[:4],
)
learned_embeds_dict[tok] = learned_embeds.detach().cpu()
torch.save(learned_embeds_dict, ti_path)
print("Ti saved to ", ti_path)
# save text encoder
if save_lora:
save_lora_weight(
unet, save_path, target_replace_module=target_replace_module_unet
)
print("Unet saved to ", save_path)
save_lora_weight(
text_encoder,
_text_lora_path(save_path),
target_replace_module=target_replace_module_text,
)
print("Text Encoder saved to ", _text_lora_path(save_path))
else:
assert save_path.endswith(
".safetensors"
), f"Save path : {save_path} should end with .safetensors"
loras = {}
embeds = {}
if save_lora:
loras["unet"] = (unet, target_replace_module_unet)
loras["text_encoder"] = (text_encoder, target_replace_module_text)
if save_ti:
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
print(
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
learned_embeds[:4],
)
embeds[tok] = learned_embeds.detach().cpu()
return save_safeloras_with_embeds(loras, embeds, save_path)
def save_safeloras_with_embeds(
modelmap = {},
embeds = {},
outpath="./lora.safetensors",
):
"""
Saves the Lora from multiple modules in a single safetensor file.
modelmap is a dictionary of {
"module name": (module, target_replace_module)
}
"""
weights = {}
metadata = {}
for name, (model, target_replace_module) in modelmap.items():
metadata[name] = json.dumps(list(target_replace_module))
for i, (_up, _down) in enumerate(
extract_lora_as_tensor(model, target_replace_module)
):
rank = _down.shape[0]
metadata[f"{name}:{i}:rank"] = str(rank)
weights[f"{name}:{i}:up"] = _up
weights[f"{name}:{i}:down"] = _down
for token, tensor in embeds.items():
metadata[token] = EMBED_FLAG
weights[token] = tensor
sorted_dict = {key: value for key, value in sorted(weights.items())}
state={}
state['weights']=sorted_dict
state['metadata'] = metadata
# print(sorted_dict.keys())
# # print('meta', metadata)
# print(f"Saving weights to {outpath}")
# safe_save(weights, outpath, metadata)
return state
def perform_tuning(
unet,
vae,
text_encoder,
dataloader,
num_steps,
scheduler,
optimizer,
save_steps: int,
placeholder_token_ids,
placeholder_tokens,
save_path,
lr_scheduler_lora,
lora_unet_target_modules,
lora_clip_target_modules,
mask_temperature,
out_name: str,
tokenizer,
test_image_path: str,
cached_latents: bool,
log_wandb: bool = False,
wandb_log_prompt_cnt: int = 10,
class_token: str = "person",
train_inpainting: bool = False,
):
progress_bar = tqdm(range(num_steps))
progress_bar.set_description("Steps")
global_step = 0
weight_dtype = torch.float16
unet.train()
text_encoder.train()
if log_wandb:
preped_clip = prepare_clip_model_sets()
loss_sum = 0.0
for epoch in range(math.ceil(num_steps / len(dataloader))):
for batch in dataloader:
lr_scheduler_lora.step()
optimizer.zero_grad()
loss = loss_step(
batch,
unet,
vae,
text_encoder,
scheduler,
train_inpainting=train_inpainting,
t_mutliplier=0.8,
mixed_precision=True,
mask_temperature=mask_temperature,
cached_latents=cached_latents,
)
loss_sum += loss.detach().item()
loss.backward()
torch.nn.utils.clip_grad_norm_(
itertools.chain(unet.parameters(), text_encoder.parameters()), 1.0
)
optimizer.step()
progress_bar.update(1)
logs = {
"loss": loss.detach().item(),
"lr": lr_scheduler_lora.get_last_lr()[0],
}
progress_bar.set_postfix(**logs)
global_step += 1
if global_step % save_steps == 0:
save_all(
unet,
text_encoder,
placeholder_token_ids=placeholder_token_ids,
placeholder_tokens=placeholder_tokens,
save_path=os.path.join(
save_path, f"step_{global_step}.safetensors"
),
target_replace_module_text=lora_clip_target_modules,
target_replace_module_unet=lora_unet_target_modules,
)
moved = (
torch.tensor(list(itertools.chain(*inspect_lora(unet).values())))
.mean()
.item()
)
print("LORA Unet Moved", moved)
moved = (
torch.tensor(
list(itertools.chain(*inspect_lora(text_encoder).values()))
)
.mean()
.item()
)
print("LORA CLIP Moved", moved)
if log_wandb:
with torch.no_grad():
pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
)
# open all images in test_image_path
images = []
for file in os.listdir(test_image_path):
if file.endswith(".png") or file.endswith(".jpg"):
images.append(
Image.open(os.path.join(test_image_path, file))
)
wandb.log({"loss": loss_sum / save_steps})
loss_sum = 0.0
wandb.log(
evaluate_pipe(
pipe,
target_images=images,
class_token=class_token,
learnt_token="".join(placeholder_tokens),
n_test=wandb_log_prompt_cnt,
n_step=50,
clip_model_sets=preped_clip,
)
)
if global_step >= num_steps:
break
return save_all(
unet,
text_encoder,
placeholder_token_ids=placeholder_token_ids,
placeholder_tokens=placeholder_tokens,
save_path=os.path.join(save_path, f"{out_name}.safetensors"),
target_replace_module_text=lora_clip_target_modules,
target_replace_module_unet=lora_unet_target_modules,
)
def train(
images,
caption,
pretrained_model_name_or_path: str,
train_text_encoder: bool = True,
pretrained_vae_name_or_path: str = None,
revision: Optional[str] = None,
perform_inversion: bool = True,
use_template: Literal[None, "object", "style"] = None,
train_inpainting: bool = False,
placeholder_tokens: str = "",
placeholder_token_at_data: Optional[str] = None,
initializer_tokens: Optional[str] = None,
seed: int = 42,
resolution: int = 512,
color_jitter: bool = True,
train_batch_size: int = 1,
sample_batch_size: int = 1,
max_train_steps_tuning: int = 1000,
max_train_steps_ti: int = 1000,
save_steps: int = 100,
gradient_accumulation_steps: int = 4,
gradient_checkpointing: bool = False,
lora_rank: int = 4,
lora_unet_target_modules={"CrossAttention", "Attention", "GEGLU"},
lora_clip_target_modules={"CLIPAttention"},
lora_dropout_p: float = 0.0,
lora_scale: float = 1.0,
use_extended_lora: bool = False,
clip_ti_decay: bool = True,
learning_rate_unet: float = 1e-4,
learning_rate_text: float = 1e-5,
learning_rate_ti: float = 5e-4,
continue_inversion: bool = False,
continue_inversion_lr: Optional[float] = None,
use_face_segmentation_condition: bool = False,
cached_latents: bool = True,
use_mask_captioned_data: bool = False,
mask_temperature: float = 1.0,
scale_lr: bool = False,
lr_scheduler: str = "linear",
lr_warmup_steps: int = 0,
lr_scheduler_lora: str = "linear",
lr_warmup_steps_lora: int = 0,
weight_decay_ti: float = 0.00,
weight_decay_lora: float = 0.001,
use_8bit_adam: bool = False,
device="cuda:0",
extra_args: Optional[dict] = None,
log_wandb: bool = False,
wandb_log_prompt_cnt: int = 10,
wandb_project_name: str = "new_pti_project",
wandb_entity: str = "new_pti_entity",
proxy_token: str = "person",
enable_xformers_memory_efficient_attention: bool = False,
out_name: str = "final_lora",
):
torch.manual_seed(seed)
# print(placeholder_tokens, initializer_tokens)
if len(placeholder_tokens) == 0:
placeholder_tokens = []
print("PTI : Placeholder Tokens not given, using null token")
else:
placeholder_tokens = placeholder_tokens.split("|")
assert (
sorted(placeholder_tokens) == placeholder_tokens
), f"Placeholder tokens should be sorted. Use something like {'|'.join(sorted(placeholder_tokens))}'"
if initializer_tokens is None:
print("PTI : Initializer Tokens not given, doing random inits")
initializer_tokens = ["<rand-0.017>"] * len(placeholder_tokens)
else:
initializer_tokens = initializer_tokens.split("|")
assert len(initializer_tokens) == len(
placeholder_tokens
), "Unequal Initializer token for Placeholder tokens."
if proxy_token is not None:
class_token = proxy_token
class_token = "".join(initializer_tokens)
if placeholder_token_at_data is not None:
tok, pat = placeholder_token_at_data.split("|")
token_map = {tok: pat}
else:
token_map = {"DUMMY": "".join(placeholder_tokens)}
print("PTI : Placeholder Tokens", placeholder_tokens)
print("PTI : Initializer Tokens", initializer_tokens)
# get the models
text_encoder, vae, unet, tokenizer, placeholder_token_ids = get_models(
pretrained_model_name_or_path,
pretrained_vae_name_or_path,
revision,
placeholder_tokens,
initializer_tokens,
device=device,
)
noise_scheduler = DDPMScheduler.from_config(
pretrained_model_name_or_path, subfolder="scheduler"
)
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
if enable_xformers_memory_efficient_attention:
from diffusers.utils.import_utils import is_xformers_available
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
if scale_lr:
unet_lr = learning_rate_unet * gradient_accumulation_steps * train_batch_size
text_encoder_lr = (
learning_rate_text * gradient_accumulation_steps * train_batch_size
)
ti_lr = learning_rate_ti * gradient_accumulation_steps * train_batch_size
else:
unet_lr = learning_rate_unet
text_encoder_lr = learning_rate_text
ti_lr = learning_rate_ti
train_dataset = PVD(
images=images,
caption=caption,
token_map=token_map,
use_template=use_template,
tokenizer=tokenizer,
size=resolution,
color_jitter=color_jitter,
use_face_segmentation_condition=use_face_segmentation_condition,
use_mask_captioned_data=use_mask_captioned_data,
train_inpainting=train_inpainting,
)
train_dataset.blur_amount = 200
if train_inpainting:
assert not cached_latents, "Cached latents not supported for inpainting"
train_dataloader = inpainting_dataloader(
train_dataset, train_batch_size, tokenizer, vae, text_encoder
)
else:
print(cached_latents)
train_dataloader = text2img_dataloader(
train_dataset,
train_batch_size,
tokenizer,
vae,
text_encoder,
cached_latents=cached_latents,
)
index_no_updates = torch.arange(len(tokenizer)) != -1
for tok_id in placeholder_token_ids:
index_no_updates[tok_id] = False
unet.requires_grad_(False)
vae.requires_grad_(False)
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
for param in params_to_freeze:
param.requires_grad = False
if cached_latents:
vae = None
# STEP 1 : Perform Inversion
if perform_inversion:
ti_optimizer = optim.AdamW(
text_encoder.get_input_embeddings().parameters(),
lr=ti_lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=weight_decay_ti,
)
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=ti_optimizer,
num_warmup_steps=lr_warmup_steps,
num_training_steps=max_train_steps_ti,
)
train_inversion(
unet,
vae,
text_encoder,
train_dataloader,
max_train_steps_ti,
cached_latents=cached_latents,
accum_iter=gradient_accumulation_steps,
scheduler=noise_scheduler,
index_no_updates=index_no_updates,
optimizer=ti_optimizer,
lr_scheduler=lr_scheduler,
save_steps=save_steps,
placeholder_tokens=placeholder_tokens,
placeholder_token_ids=placeholder_token_ids,
save_path="./tmps",
test_image_path="./tmps",
log_wandb=log_wandb,
wandb_log_prompt_cnt=wandb_log_prompt_cnt,
class_token=class_token,
train_inpainting=train_inpainting,
mixed_precision=False,
tokenizer=tokenizer,
clip_ti_decay=clip_ti_decay,
)
del ti_optimizer
# Next perform Tuning with LoRA:
if not use_extended_lora:
unet_lora_params, _ = inject_trainable_lora(
unet,
r=lora_rank,
target_replace_module=lora_unet_target_modules,
dropout_p=lora_dropout_p,
scale=lora_scale,
)
else:
print("PTI : USING EXTENDED UNET!!!")
lora_unet_target_modules = (
lora_unet_target_modules | UNET_EXTENDED_TARGET_REPLACE
)
print("PTI : Will replace modules: ", lora_unet_target_modules)
unet_lora_params, _ = inject_trainable_lora_extended(
unet, r=lora_rank, target_replace_module=lora_unet_target_modules
)
print(f"PTI : has {len(unet_lora_params)} lora")
print("PTI : Before training:")
inspect_lora(unet)
params_to_optimize = [
{"params": itertools.chain(*unet_lora_params), "lr": unet_lr},
]
text_encoder.requires_grad_(False)
if continue_inversion:
params_to_optimize += [
{
"params": text_encoder.get_input_embeddings().parameters(),
"lr": continue_inversion_lr
if continue_inversion_lr is not None
else ti_lr,
}
]
text_encoder.requires_grad_(True)
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
for param in params_to_freeze:
param.requires_grad = False
else:
text_encoder.requires_grad_(False)
if train_text_encoder:
text_encoder_lora_params, _ = inject_trainable_lora(
text_encoder,
target_replace_module=lora_clip_target_modules,
r=lora_rank,
)
params_to_optimize += [
{
"params": itertools.chain(*text_encoder_lora_params),
"lr": text_encoder_lr,
}
]
inspect_lora(text_encoder)
lora_optimizers = optim.AdamW(params_to_optimize, weight_decay=weight_decay_lora)
unet.train()
if train_text_encoder:
text_encoder.train()
train_dataset.blur_amount = 70
lr_scheduler_lora = get_scheduler(
lr_scheduler_lora,
optimizer=lora_optimizers,
num_warmup_steps=lr_warmup_steps_lora,
num_training_steps=max_train_steps_tuning,
)
return perform_tuning(
unet,
vae,
text_encoder,
train_dataloader,
max_train_steps_tuning,
cached_latents=cached_latents,
scheduler=noise_scheduler,
optimizer=lora_optimizers,
save_steps=save_steps,
placeholder_tokens=placeholder_tokens,
placeholder_token_ids=placeholder_token_ids,
save_path="./tmps",
lr_scheduler_lora=lr_scheduler_lora,
lora_unet_target_modules=lora_unet_target_modules,
lora_clip_target_modules=lora_clip_target_modules,
mask_temperature=mask_temperature,
tokenizer=tokenizer,
out_name=out_name,
test_image_path="./tmps",
log_wandb=log_wandb,
wandb_log_prompt_cnt=wandb_log_prompt_cnt,
class_token=class_token,
train_inpainting=train_inpainting,
)
def semantic_karlo(prompt, output_dir, num_initial_image, bg_preprocess=False):
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
pipe = pipe.to('cuda')
view_prompt=["front view of ","overhead view of ","side view of ", "back view of "]
if bg_preprocess:
# Please refer to the code at https://github.com/Ir1d/image-background-remove-tool.
import cv2
from carvekit.api.high import HiInterface
interface = HiInterface(object_type="object",
batch_size_seg=5,
batch_size_matting=1,
device='cuda' if torch.cuda.is_available() else 'cpu',
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=False)
for i in range(num_initial_image):
t=", white background" if bg_preprocess else ", white background"
if i==0:
prompt_ = f"{view_prompt[i%4]}{prompt}{t}"
else:
prompt_ = f"{view_prompt[i%4]}{prompt}"
image = pipe(prompt_).images[0]
fn=f"instance{i}.png"
os.makedirs(output_dir,exist_ok=True)
if bg_preprocess:
# motivated by NeuralLift-360 (removing bg), and Zero-1-to-3 (removing bg and object-centering)
# NOTE: This option was added during the code orgranization process.
# The results reported in the paper were obtained with [bg_preprocess: False] setting.
img_without_background = interface([image])
mask = np.array(img_without_background[0]) > 127
image = np.array(image)
image[~mask] = [255., 255., 255.]
# x, y, w, h = cv2.boundingRect(mask.astype(np.uint8))
# image = image[y:y+h, x:x+w, :]
image = Image.fromarray(np.array(image))
image.save(os.path.join(output_dir,fn))
def semantic_sd(prompt, output_dir, num_initial_image, bg_preprocess=False):
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to('cuda')
view_prompt=["front view of ","overhead view of ","side view of ", "back view of "]
if bg_preprocess:
# Please refer to the code at https://github.com/Ir1d/image-background-remove-tool.
import cv2
from carvekit.api.high import HiInterface
interface = HiInterface(object_type="object",
batch_size_seg=5,
batch_size_matting=1,
device='cuda' if torch.cuda.is_available() else 'cpu',
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=False)
for i in range(num_initial_image):
t=", white background" if bg_preprocess else ", white background"
if i==0:
prompt_ = f"{view_prompt[i%4]}{prompt}{t}"
else:
prompt_ = f"{view_prompt[i%4]}{prompt}"
image = pipe(prompt_).images[0]
fn=f"instance{i}.png"
os.makedirs(output_dir,exist_ok=True)
if bg_preprocess:
# motivated by NeuralLift-360 (removing bg), and Zero-1-to-3 (removing bg and object-centering)
# NOTE: This option was added during the code orgranization process.
# The results reported in the paper were obtained with [bg_preprocess: False] setting.
img_without_background = interface([image])
mask = np.array(img_without_background[0]) > 127
image = np.array(image)
image[~mask] = [255., 255., 255.]
# x, y, w, h = cv2.boundingRect(mask.astype(np.uint8))
# image = image[y:y+h, x:x+w, :]
image = Image.fromarray(np.array(image))
image.save(os.path.join(output_dir,fn))
def semantic_coding(images, cfgs,sd,initial):
ti_step=cfgs.pop('ti_step')
pt_step=cfgs.pop('pt_step')
# semantic_model=cfgs.pop('semantic_model')
prompt=cfgs['sd']['prompt']
# instance_dir=os.path.join(exp_dir,'initial_image')
# weight_dir=os.path.join(exp_dir,'lora')
if initial=="":
initial=None
state=train(images=images, caption=initial, pretrained_model_name_or_path='runwayml/stable-diffusion-v1-5',\
gradient_checkpointing=True,\
scale_lr=True,lora_rank=1,cached_latents=False,save_steps=max(ti_step,pt_step)+1,\
max_train_steps_ti=ti_step,max_train_steps_tuning=pt_step, use_template="object",\
lr_warmup_steps=0, lr_warmup_steps_lora=100, placeholder_tokens="<0>", initializer_tokens=initial,\
continue_inversion=True, continue_inversion_lr=1e-4,device="cuda:0",
)
if initial is not None:
sd.prompt=prompt.replace(initial,'<0>')
else:
sd.prompt="a <0>"
return state |