Spaces:
Running
Running
File size: 33,423 Bytes
1a7d583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 |
from typing import Union
import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils.parametrizations import weight_norm
from torchaudio.transforms import Resample
import os
import librosa
import soundfile as sf
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
import math
from functools import partial
from einops import rearrange, repeat
from local_attention import LocalAttention
from torch import nn
os.environ["LRU_CACHE_CAPACITY"] = "3"
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
sampling_rate = None
try:
data, sampling_rate = sf.read(full_path, always_2d=True) # than soundfile.
except Exception as error:
print(f"'{full_path}' failed to load with {error}")
if return_empty_on_exception:
return [], sampling_rate or target_sr or 48000
else:
raise Exception(error)
if len(data.shape) > 1:
data = data[:, 0]
assert (
len(data) > 2
) # check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
max_mag = -np.iinfo(
data.dtype
).min # maximum magnitude = min possible value of intXX
else: # if audio data is type fp32
max_mag = max(np.amax(data), -np.amin(data))
max_mag = (
(2**31) + 1
if max_mag > (2**15)
else ((2**15) + 1 if max_mag > 1.01 else 1.0)
) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
data = torch.FloatTensor(data.astype(np.float32)) / max_mag
if (
torch.isinf(data) | torch.isnan(data)
).any() and return_empty_on_exception: # resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
return [], sampling_rate or target_sr or 48000
if target_sr is not None and sampling_rate != target_sr:
data = torch.from_numpy(
librosa.core.resample(
data.numpy(), orig_sr=sampling_rate, target_sr=target_sr
)
)
sampling_rate = target_sr
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
class STFT:
def __init__(
self,
sr=22050,
n_mels=80,
n_fft=1024,
win_size=1024,
hop_length=256,
fmin=20,
fmax=11025,
clip_val=1e-5,
):
self.target_sr = sr
self.n_mels = n_mels
self.n_fft = n_fft
self.win_size = win_size
self.hop_length = hop_length
self.fmin = fmin
self.fmax = fmax
self.clip_val = clip_val
self.mel_basis = {}
self.hann_window = {}
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
sampling_rate = self.target_sr
n_mels = self.n_mels
n_fft = self.n_fft
win_size = self.win_size
hop_length = self.hop_length
fmin = self.fmin
fmax = self.fmax
clip_val = self.clip_val
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(n_fft * factor))
win_size_new = int(np.round(win_size * factor))
hop_length_new = int(np.round(hop_length * speed))
if not train:
mel_basis = self.mel_basis
hann_window = self.hann_window
else:
mel_basis = {}
hann_window = {}
mel_basis_key = str(fmax) + "_" + str(y.device)
if mel_basis_key not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax
)
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
keyshift_key = str(keyshift) + "_" + str(y.device)
if keyshift_key not in hann_window:
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
pad_left = (win_size_new - hop_length_new) // 2
pad_right = max(
(win_size_new - hop_length_new + 1) // 2,
win_size_new - y.size(-1) - pad_left,
)
if pad_right < y.size(-1):
mode = "reflect"
else:
mode = "constant"
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft_new,
hop_length=hop_length_new,
win_length=win_size_new,
window=hann_window[keyshift_key],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
if keyshift != 0:
size = n_fft // 2 + 1
resize = spec.size(1)
if resize < size:
spec = F.pad(spec, (0, 0, 0, size - resize))
spec = spec[:, :size, :] * win_size / win_size_new
spec = torch.matmul(mel_basis[mel_basis_key], spec)
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
return spec
def __call__(self, audiopath):
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
return spect
stft = STFT()
# import fast_transformers.causal_product.causal_product_cuda
def softmax_kernel(
data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None
):
b, h, *_ = data.shape
# (batch size, head, length, model_dim)
# normalize model dim
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
# what is ration?, projection_matrix.shape[0] --> 266
ratio = projection_matrix.shape[0] ** -0.5
projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h)
projection = projection.type_as(data)
# data_dash = w^T x
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection)
# diag_data = D**2
diag_data = data**2
diag_data = torch.sum(diag_data, dim=-1)
diag_data = (diag_data / 2.0) * (data_normalizer**2)
diag_data = diag_data.unsqueeze(dim=-1)
if is_query:
data_dash = ratio * (
torch.exp(
data_dash
- diag_data
- torch.max(data_dash, dim=-1, keepdim=True).values
)
+ eps
)
else:
data_dash = ratio * (
torch.exp(data_dash - diag_data + eps)
) # - torch.max(data_dash)) + eps)
return data_dash.type_as(data)
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
unstructured_block = torch.randn((cols, cols), device=device)
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
q, r = map(lambda t: t.to(device), (q, r))
# proposed by @Parskatt
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
if qr_uniform_q:
d = torch.diag(r, 0)
q *= d.sign()
return q.t()
def exists(val):
return val is not None
def empty(tensor):
return tensor.numel() == 0
def default(val, d):
return val if exists(val) else d
def cast_tuple(val):
return (val,) if not isinstance(val, tuple) else val
class PCmer(nn.Module):
"""The encoder that is used in the Transformer model."""
def __init__(
self,
num_layers,
num_heads,
dim_model,
dim_keys,
dim_values,
residual_dropout,
attention_dropout,
):
super().__init__()
self.num_layers = num_layers
self.num_heads = num_heads
self.dim_model = dim_model
self.dim_values = dim_values
self.dim_keys = dim_keys
self.residual_dropout = residual_dropout
self.attention_dropout = attention_dropout
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
# METHODS ########################################################################################################
def forward(self, phone, mask=None):
# apply all layers to the input
for i, layer in enumerate(self._layers):
phone = layer(phone, mask)
# provide the final sequence
return phone
# ==================================================================================================================== #
# CLASS _ E N C O D E R L A Y E R #
# ==================================================================================================================== #
class _EncoderLayer(nn.Module):
"""One layer of the encoder.
Attributes:
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
"""
def __init__(self, parent: PCmer):
"""Creates a new instance of ``_EncoderLayer``.
Args:
parent (Encoder): The encoder that the layers is created for.
"""
super().__init__()
self.conformer = ConformerConvModule(parent.dim_model)
self.norm = nn.LayerNorm(parent.dim_model)
self.dropout = nn.Dropout(parent.residual_dropout)
# selfatt -> fastatt: performer!
self.attn = SelfAttention(
dim=parent.dim_model, heads=parent.num_heads, causal=False
)
# METHODS ########################################################################################################
def forward(self, phone, mask=None):
# compute attention sub-layer
phone = phone + (self.attn(self.norm(phone), mask=mask))
phone = phone + (self.conformer(phone))
return phone
def calc_same_padding(kernel_size):
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
# helper classes
class Swish(nn.Module):
def forward(self, x):
return x * x.sigmoid()
class Transpose(nn.Module):
def __init__(self, dims):
super().__init__()
assert len(dims) == 2, "dims must be a tuple of two dimensions"
self.dims = dims
def forward(self, x):
return x.transpose(*self.dims)
class GLU(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
class DepthWiseConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size, padding):
super().__init__()
self.padding = padding
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)
def forward(self, x):
x = F.pad(x, self.padding)
return self.conv(x)
class ConformerConvModule(nn.Module):
def __init__(
self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0
):
super().__init__()
inner_dim = dim * expansion_factor
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
self.net = nn.Sequential(
nn.LayerNorm(dim),
Transpose((1, 2)),
nn.Conv1d(dim, inner_dim * 2, 1),
GLU(dim=1),
DepthWiseConv1d(
inner_dim, inner_dim, kernel_size=kernel_size, padding=padding
),
# nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
Swish(),
nn.Conv1d(inner_dim, dim, 1),
Transpose((1, 2)),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
def linear_attention(q, k, v):
if v is None:
out = torch.einsum("...ed,...nd->...ne", k, q)
return out
else:
k_cumsum = k.sum(dim=-2)
# k_cumsum = k.sum(dim = -2)
D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8)
context = torch.einsum("...nd,...ne->...de", k, v)
out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv)
return out
def gaussian_orthogonal_random_matrix(
nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None
):
nb_full_blocks = int(nb_rows / nb_columns)
block_list = []
for _ in range(nb_full_blocks):
q = orthogonal_matrix_chunk(
nb_columns, qr_uniform_q=qr_uniform_q, device=device
)
block_list.append(q)
remaining_rows = nb_rows - nb_full_blocks * nb_columns
if remaining_rows > 0:
q = orthogonal_matrix_chunk(
nb_columns, qr_uniform_q=qr_uniform_q, device=device
)
block_list.append(q[:remaining_rows])
final_matrix = torch.cat(block_list)
if scaling == 0:
multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
elif scaling == 1:
multiplier = math.sqrt((float(nb_columns))) * torch.ones(
(nb_rows,), device=device
)
else:
raise ValueError(f"Invalid scaling {scaling}")
return torch.diag(multiplier) @ final_matrix
class FastAttention(nn.Module):
def __init__(
self,
dim_heads,
nb_features=None,
ortho_scaling=0,
causal=False,
generalized_attention=False,
kernel_fn=nn.ReLU(),
qr_uniform_q=False,
no_projection=False,
):
super().__init__()
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
self.dim_heads = dim_heads
self.nb_features = nb_features
self.ortho_scaling = ortho_scaling
self.create_projection = partial(
gaussian_orthogonal_random_matrix,
nb_rows=self.nb_features,
nb_columns=dim_heads,
scaling=ortho_scaling,
qr_uniform_q=qr_uniform_q,
)
projection_matrix = self.create_projection()
self.register_buffer("projection_matrix", projection_matrix)
self.generalized_attention = generalized_attention
self.kernel_fn = kernel_fn
# if this is turned on, no projection will be used
# queries and keys will be softmax-ed as in the original efficient attention paper
self.no_projection = no_projection
self.causal = causal
@torch.no_grad()
def redraw_projection_matrix(self):
projections = self.create_projection()
self.projection_matrix.copy_(projections)
del projections
def forward(self, q, k, v):
device = q.device
if self.no_projection:
q = q.softmax(dim=-1)
k = torch.exp(k) if self.causal else k.softmax(dim=-2)
else:
create_kernel = partial(
softmax_kernel, projection_matrix=self.projection_matrix, device=device
)
q = create_kernel(q, is_query=True)
k = create_kernel(k, is_query=False)
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
if v is None:
out = attn_fn(q, k, None)
return out
else:
out = attn_fn(q, k, v)
return out
class SelfAttention(nn.Module):
def __init__(
self,
dim,
causal=False,
heads=8,
dim_head=64,
local_heads=0,
local_window_size=256,
nb_features=None,
feature_redraw_interval=1000,
generalized_attention=False,
kernel_fn=nn.ReLU(),
qr_uniform_q=False,
dropout=0.0,
no_projection=False,
):
super().__init__()
assert dim % heads == 0, "dimension must be divisible by number of heads"
dim_head = default(dim_head, dim // heads)
inner_dim = dim_head * heads
self.fast_attention = FastAttention(
dim_head,
nb_features,
causal=causal,
generalized_attention=generalized_attention,
kernel_fn=kernel_fn,
qr_uniform_q=qr_uniform_q,
no_projection=no_projection,
)
self.heads = heads
self.global_heads = heads - local_heads
self.local_attn = (
LocalAttention(
window_size=local_window_size,
causal=causal,
autopad=True,
dropout=dropout,
look_forward=int(not causal),
rel_pos_emb_config=(dim_head, local_heads),
)
if local_heads > 0
else None
)
self.to_q = nn.Linear(dim, inner_dim)
self.to_k = nn.Linear(dim, inner_dim)
self.to_v = nn.Linear(dim, inner_dim)
self.to_out = nn.Linear(inner_dim, dim)
self.dropout = nn.Dropout(dropout)
@torch.no_grad()
def redraw_projection_matrix(self):
self.fast_attention.redraw_projection_matrix()
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
name=None,
inference=False,
**kwargs,
):
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
cross_attend = exists(context)
context = default(context, x)
context_mask = default(context_mask, mask) if not cross_attend else context_mask
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
attn_outs = []
if not empty(q):
if exists(context_mask):
global_mask = context_mask[:, None, :, None]
v.masked_fill_(~global_mask, 0.0)
if cross_attend:
pass
else:
out = self.fast_attention(q, k, v)
attn_outs.append(out)
if not empty(lq):
assert (
not cross_attend
), "local attention is not compatible with cross attention"
out = self.local_attn(lq, lk, lv, input_mask=mask)
attn_outs.append(out)
out = torch.cat(attn_outs, dim=1)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out(out)
return self.dropout(out)
def l2_regularization(model, l2_alpha):
l2_loss = []
for module in model.modules():
if type(module) is nn.Conv2d:
l2_loss.append((module.weight**2).sum() / 2.0)
return l2_alpha * sum(l2_loss)
class FCPE(nn.Module):
def __init__(
self,
input_channel=128,
out_dims=360,
n_layers=12,
n_chans=512,
use_siren=False,
use_full=False,
loss_mse_scale=10,
loss_l2_regularization=False,
loss_l2_regularization_scale=1,
loss_grad1_mse=False,
loss_grad1_mse_scale=1,
f0_max=1975.5,
f0_min=32.70,
confidence=False,
threshold=0.05,
use_input_conv=True,
):
super().__init__()
if use_siren is True:
raise ValueError("Siren is not supported yet.")
if use_full is True:
raise ValueError("Full model is not supported yet.")
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
self.loss_l2_regularization = (
loss_l2_regularization if (loss_l2_regularization is not None) else False
)
self.loss_l2_regularization_scale = (
loss_l2_regularization_scale
if (loss_l2_regularization_scale is not None)
else 1
)
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
self.loss_grad1_mse_scale = (
loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
)
self.f0_max = f0_max if (f0_max is not None) else 1975.5
self.f0_min = f0_min if (f0_min is not None) else 32.70
self.confidence = confidence if (confidence is not None) else False
self.threshold = threshold if (threshold is not None) else 0.05
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
self.cent_table_b = torch.Tensor(
np.linspace(
self.f0_to_cent(torch.Tensor([f0_min]))[0],
self.f0_to_cent(torch.Tensor([f0_max]))[0],
out_dims,
)
)
self.register_buffer("cent_table", self.cent_table_b)
# conv in stack
_leaky = nn.LeakyReLU()
self.stack = nn.Sequential(
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
nn.GroupNorm(4, n_chans),
_leaky,
nn.Conv1d(n_chans, n_chans, 3, 1, 1),
)
# transformer
self.decoder = PCmer(
num_layers=n_layers,
num_heads=8,
dim_model=n_chans,
dim_keys=n_chans,
dim_values=n_chans,
residual_dropout=0.1,
attention_dropout=0.1,
)
self.norm = nn.LayerNorm(n_chans)
# out
self.n_out = out_dims
self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))
def forward(
self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"
):
"""
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
"""
if cdecoder == "argmax":
self.cdecoder = self.cents_decoder
elif cdecoder == "local_argmax":
self.cdecoder = self.cents_local_decoder
if self.use_input_conv:
x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
else:
x = mel
x = self.decoder(x)
x = self.norm(x)
x = self.dense_out(x) # [B,N,D]
x = torch.sigmoid(x)
if not infer:
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
loss_all = self.loss_mse_scale * F.binary_cross_entropy(
x, gt_cent_f0
) # bce loss
# l2 regularization
if self.loss_l2_regularization:
loss_all = loss_all + l2_regularization(
model=self, l2_alpha=self.loss_l2_regularization_scale
)
x = loss_all
if infer:
x = self.cdecoder(x)
x = self.cent_to_f0(x)
if not return_hz_f0:
x = (1 + x / 700).log()
return x
def cents_decoder(self, y, mask=True):
B, N, _ = y.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(
y, dim=-1, keepdim=True
) # cents: [B,N,1]
if mask:
confident = torch.max(y, dim=-1, keepdim=True)[0]
confident_mask = torch.ones_like(confident)
confident_mask[confident <= self.threshold] = float("-INF")
rtn = rtn * confident_mask
if self.confidence:
return rtn, confident
else:
return rtn
def cents_local_decoder(self, y, mask=True):
B, N, _ = y.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
confident, max_index = torch.max(y, dim=-1, keepdim=True)
local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
local_argmax_index[local_argmax_index < 0] = 0
local_argmax_index[local_argmax_index >= self.n_out] = self.n_out - 1
ci_l = torch.gather(ci, -1, local_argmax_index)
y_l = torch.gather(y, -1, local_argmax_index)
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(
y_l, dim=-1, keepdim=True
) # cents: [B,N,1]
if mask:
confident_mask = torch.ones_like(confident)
confident_mask[confident <= self.threshold] = float("-INF")
rtn = rtn * confident_mask
if self.confidence:
return rtn, confident
else:
return rtn
def cent_to_f0(self, cent):
return 10.0 * 2 ** (cent / 1200.0)
def f0_to_cent(self, f0):
return 1200.0 * torch.log2(f0 / 10.0)
def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0)))
B, N, _ = cents.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
class FCPEInfer:
def __init__(self, model_path, device=None, dtype=torch.float32):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
ckpt = torch.load(model_path, map_location=torch.device(self.device))
self.args = DotDict(ckpt["config"])
self.dtype = dtype
model = FCPE(
input_channel=self.args.model.input_channel,
out_dims=self.args.model.out_dims,
n_layers=self.args.model.n_layers,
n_chans=self.args.model.n_chans,
use_siren=self.args.model.use_siren,
use_full=self.args.model.use_full,
loss_mse_scale=self.args.loss.loss_mse_scale,
loss_l2_regularization=self.args.loss.loss_l2_regularization,
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
loss_grad1_mse=self.args.loss.loss_grad1_mse,
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
f0_max=self.args.model.f0_max,
f0_min=self.args.model.f0_min,
confidence=self.args.model.confidence,
)
model.to(self.device).to(self.dtype)
model.load_state_dict(ckpt["model"])
model.eval()
self.model = model
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
@torch.no_grad()
def __call__(self, audio, sr, threshold=0.05):
self.model.threshold = threshold
audio = audio[None, :]
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
return f0
class Wav2Mel:
def __init__(self, args, device=None, dtype=torch.float32):
# self.args = args
self.sampling_rate = args.mel.sampling_rate
self.hop_size = args.mel.hop_size
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.dtype = dtype
self.stft = STFT(
args.mel.sampling_rate,
args.mel.num_mels,
args.mel.n_fft,
args.mel.win_size,
args.mel.hop_size,
args.mel.fmin,
args.mel.fmax,
)
self.resample_kernel = {}
def extract_nvstft(self, audio, keyshift=0, train=False):
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(
1, 2
) # B, n_frames, bins
return mel
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
audio = audio.to(self.dtype).to(self.device)
# resample
if sample_rate == self.sampling_rate:
audio_res = audio
else:
key_str = str(sample_rate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(
sample_rate, self.sampling_rate, lowpass_filter_width=128
)
self.resample_kernel[key_str] = (
self.resample_kernel[key_str].to(self.dtype).to(self.device)
)
audio_res = self.resample_kernel[key_str](audio)
# extract
mel = self.extract_nvstft(
audio_res, keyshift=keyshift, train=train
) # B, n_frames, bins
n_frames = int(audio.shape[1] // self.hop_size) + 1
if n_frames > int(mel.shape[1]):
mel = torch.cat((mel, mel[:, -1:, :]), 1)
if n_frames < int(mel.shape[1]):
mel = mel[:, :n_frames, :]
return mel
def __call__(self, audio, sample_rate, keyshift=0, train=False):
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class F0Predictor(object):
def compute_f0(self, wav, p_len):
"""
input: wav:[signal_length]
p_len:int
output: f0:[signal_length//hop_length]
"""
pass
def compute_f0_uv(self, wav, p_len):
"""
input: wav:[signal_length]
p_len:int
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
"""
pass
class FCPEF0Predictor(F0Predictor):
def __init__(
self,
model_path,
hop_length=512,
f0_min=50,
f0_max=1100,
dtype=torch.float32,
device=None,
sampling_rate=44100,
threshold=0.05,
):
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
self.hop_length = hop_length
self.f0_min = f0_min
self.f0_max = f0_max
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.threshold = threshold
self.sampling_rate = sampling_rate
self.dtype = dtype
self.name = "fcpe"
def repeat_expand(
self,
content: Union[torch.Tensor, np.ndarray],
target_len: int,
mode: str = "nearest",
):
ndim = content.ndim
if content.ndim == 1:
content = content[None, None]
elif content.ndim == 2:
content = content[None]
assert content.ndim == 3
is_np = isinstance(content, np.ndarray)
if is_np:
content = torch.from_numpy(content)
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
if is_np:
results = results.numpy()
if ndim == 1:
return results[0, 0]
elif ndim == 2:
return results[0]
def post_process(self, x, sampling_rate, f0, pad_to):
if isinstance(f0, np.ndarray):
f0 = torch.from_numpy(f0).float().to(x.device)
if pad_to is None:
return f0
f0 = self.repeat_expand(f0, pad_to)
vuv_vector = torch.zeros_like(f0)
vuv_vector[f0 > 0.0] = 1.0
vuv_vector[f0 <= 0.0] = 0.0
# 去掉0频率, 并线性插值
nzindex = torch.nonzero(f0).squeeze()
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
if f0.shape[0] <= 0:
return (
torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),
vuv_vector.cpu().numpy(),
)
if f0.shape[0] == 1:
return (
torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]
).cpu().numpy(), vuv_vector.cpu().numpy()
# 大概可以用 torch 重写?
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
return f0, vuv_vector.cpu().numpy()
def compute_f0(self, wav, p_len=None):
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
if p_len is None:
print("fcpe p_len is None")
p_len = x.shape[0] // self.hop_length
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
if torch.all(f0 == 0):
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
return rtn, rtn
return self.post_process(x, self.sampling_rate, f0, p_len)[0]
def compute_f0_uv(self, wav, p_len=None):
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
if p_len is None:
p_len = x.shape[0] // self.hop_length
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
if torch.all(f0 == 0):
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
return rtn, rtn
return self.post_process(x, self.sampling_rate, f0, p_len)
|