Spaces:
Running
Running
File size: 4,037 Bytes
85d3b29 1a7d583 85d3b29 1a7d583 85d3b29 1a7d583 85d3b29 1a7d583 85d3b29 1a7d583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os, sys, shutil
import tempfile
import gradio as gr
import pandas as pd
import requests
from core import run_download_script
from assets.i18n.i18n import I18nAuto
from rvc.lib.utils import format_title
i18n = I18nAuto()
now_dir = os.getcwd()
sys.path.append(now_dir)
gradio_temp_dir = os.path.join(tempfile.gettempdir(), "gradio")
if os.path.exists(gradio_temp_dir):
shutil.rmtree(gradio_temp_dir)
def save_drop_model(dropbox):
if "pth" not in dropbox and "index" not in dropbox:
raise gr.Error(
message="The file you dropped is not a valid model file. Please try again."
)
else:
file_name = format_title(os.path.basename(dropbox))
if ".pth" in dropbox:
model_name = format_title(file_name.split(".pth")[0])
else:
if "v2" not in dropbox:
model_name = format_title(
file_name.split("_nprobe_1_")[1].split("_v1")[0]
)
else:
model_name = format_title(
file_name.split("_nprobe_1_")[1].split("_v2")[0]
)
model_path = os.path.join(now_dir, "logs", model_name)
if not os.path.exists(model_path):
os.makedirs(model_path)
if os.path.exists(os.path.join(model_path, file_name)):
os.remove(os.path.join(model_path, file_name))
shutil.move(dropbox, os.path.join(model_path, file_name))
print(f"{file_name} saved in {model_path}")
gr.Info(f"{file_name} saved in {model_path}")
return None
def search_models(name):
url = f"https://cjtfqzjfdimgpvpwhzlv.supabase.co/rest/v1/models?name=ilike.%25{name}%25&order=created_at.desc&limit=15"
headers = {
"apikey": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImNqdGZxempmZGltZ3B2cHdoemx2Iiwicm9sZSI6ImFub24iLCJpYXQiOjE2OTUxNjczODgsImV4cCI6MjAxMDc0MzM4OH0.7z5WMIbjR99c2Ooc0ma7B_FyGq10G8X-alkCYTkKR10"
}
response = requests.get(url, headers=headers)
data = response.json()
if len(data) == 0:
gr.Info(i18n("We couldn't find models by that name."))
return None
else:
df = pd.DataFrame(data)[["name", "link", "epochs", "type"]]
df["link"] = df["link"].apply(
lambda x: f'<a href="{x}" target="_blank">{x}</a>'
)
return df
def download_tab():
with gr.Column():
gr.Markdown(value=i18n("## Download Model"))
model_link = gr.Textbox(
label=i18n("Model Link"),
placeholder=i18n("Introduce the model link"),
interactive=True,
)
model_download_output_info = gr.Textbox(
label=i18n("Output Information"),
info=i18n("The output information will be displayed here."),
value="",
max_lines=8,
interactive=False,
)
model_download_button = gr.Button(i18n("Download Model"))
model_download_button.click(
run_download_script,
[model_link],
model_download_output_info,
api_name="model_download",
)
gr.Markdown(value=i18n("## Drop files"))
dropbox = gr.File(
label=i18n(
"Drag your .pth file and .index file into this space. Drag one and then the other."
),
type="filepath",
)
dropbox.upload(
fn=save_drop_model,
inputs=[dropbox],
outputs=[dropbox],
)
gr.Markdown(value=i18n("## Search Model"))
search_name = gr.Textbox(
label=i18n("Model Name"),
placeholder=i18n("Introduce the model name to search."),
interactive=True,
)
search_table = gr.Dataframe(datatype="markdown")
search = gr.Button(i18n("Search"))
search.click(
search_models,
[search_name],
search_table,
)
search_name.submit(search_models, [search_name], search_table)
|