File size: 64,621 Bytes
0d93e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import chain
import logging
import math
from pathlib import Path
import random
import re
import typing as tp
import warnings

import einops
from num2words import num2words
import spacy
from transformers import RobertaTokenizer, T5EncoderModel, T5Tokenizer  # type: ignore
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence

from .chroma import ChromaExtractor
from .streaming import StreamingModule
from .transformer import create_sin_embedding
from ..data.audio import audio_read
from ..data.audio_dataset import SegmentInfo
from ..data.audio_utils import convert_audio
from ..environment import AudioCraftEnvironment
from ..quantization import ResidualVectorQuantizer
from ..utils.autocast import TorchAutocast
from ..utils.cache import EmbeddingCache
from ..utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once


logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str]  # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor]  # condition, mask


class WavCondition(tp.NamedTuple):
    wav: torch.Tensor
    length: torch.Tensor
    sample_rate: tp.List[int]
    path: tp.List[tp.Optional[str]] = []
    seek_time: tp.List[tp.Optional[float]] = []


class JointEmbedCondition(tp.NamedTuple):
    wav: torch.Tensor
    text: tp.List[tp.Optional[str]]
    length: torch.Tensor
    sample_rate: tp.List[int]
    path: tp.List[tp.Optional[str]] = []
    seek_time: tp.List[tp.Optional[float]] = []


@dataclass
class ConditioningAttributes:
    text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
    wav: tp.Dict[str, WavCondition] = field(default_factory=dict)
    joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)

    def __getitem__(self, item):
        return getattr(self, item)

    @property
    def text_attributes(self):
        return self.text.keys()

    @property
    def wav_attributes(self):
        return self.wav.keys()

    @property
    def joint_embed_attributes(self):
        return self.joint_embed.keys()

    @property
    def attributes(self):
        return {
            "text": self.text_attributes,
            "wav": self.wav_attributes,
            "joint_embed": self.joint_embed_attributes,
        }

    def to_flat_dict(self):
        return {
            **{f"text.{k}": v for k, v in self.text.items()},
            **{f"wav.{k}": v for k, v in self.wav.items()},
            **{f"joint_embed.{k}": v for k, v in self.joint_embed.items()}
        }

    @classmethod
    def from_flat_dict(cls, x):
        out = cls()
        for k, v in x.items():
            kind, att = k.split(".")
            out[kind][att] = v
        return out


class SegmentWithAttributes(SegmentInfo):
    """Base class for all dataclasses that are used for conditioning.
    All child classes should implement `to_condition_attributes` that converts
    the existing attributes to a dataclass of type ConditioningAttributes.
    """
    def to_condition_attributes(self) -> ConditioningAttributes:
        raise NotImplementedError()


def nullify_condition(condition: ConditionType, dim: int = 1):
    """Transform an input condition to a null condition.
    The way it is done by converting it to a single zero vector similarly
    to how it is done inside WhiteSpaceTokenizer and NoopTokenizer.

    Args:
        condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor])
        dim (int): The dimension that will be truncated (should be the time dimension)
        WARNING!: dim should not be the batch dimension!
    Returns:
        ConditionType: A tuple of null condition and mask
    """
    assert dim != 0, "dim cannot be the batch dimension!"
    assert isinstance(condition, tuple) and \
        isinstance(condition[0], torch.Tensor) and \
        isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!"
    cond, mask = condition
    B = cond.shape[0]
    last_dim = cond.dim() - 1
    out = cond.transpose(dim, last_dim)
    out = 0. * out[..., :1]
    out = out.transpose(dim, last_dim)
    mask = torch.zeros((B, 1), device=out.device).int()
    assert cond.dim() == out.dim()
    return out, mask


def nullify_wav(cond: WavCondition) -> WavCondition:
    """Transform a WavCondition to a nullified WavCondition.
    It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes.

    Args:
        cond (WavCondition): Wav condition with wav, tensor of shape [B, T].
    Returns:
        WavCondition: Nullified wav condition.
    """
    null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1)
    return WavCondition(
        wav=null_wav,
        length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device),
        sample_rate=cond.sample_rate,
        path=[None] * cond.wav.shape[0],
        seek_time=[None] * cond.wav.shape[0],
    )


def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition:
    """Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0,
    and replacing metadata by dummy attributes.

    Args:
        cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T].
    """
    null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1)
    return JointEmbedCondition(
        wav=null_wav, text=[None] * len(embed.text),
        length=torch.LongTensor([0]).to(embed.wav.device),
        sample_rate=embed.sample_rate,
        path=[None] * embed.wav.shape[0],
        seek_time=[0] * embed.wav.shape[0],
    )


class Tokenizer:
    """Base tokenizer implementation
    (in case we want to introduce more advances tokenizers in the future).
    """
    def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError()


class WhiteSpaceTokenizer(Tokenizer):
    """This tokenizer should be used for natural language descriptions.
    For example:
    ["he didn't, know he's going home.", 'shorter sentence'] =>
    [[78, 62, 31,  4, 78, 25, 19, 34],
    [59, 77,  0,  0,  0,  0,  0,  0]]
    """
    PUNCTUATION = "?:!.,;"

    def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm",
                 lemma: bool = True, stopwords: bool = True) -> None:
        self.n_bins = n_bins
        self.pad_idx = pad_idx
        self.lemma = lemma
        self.stopwords = stopwords
        try:
            self.nlp = spacy.load(language)
        except IOError:
            spacy.cli.download(language)  # type: ignore
            self.nlp = spacy.load(language)

    @tp.no_type_check
    def __call__(self, texts: tp.List[tp.Optional[str]],
                 return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Take a list of strings and convert them to a tensor of indices.

        Args:
            texts (list[str]): List of strings.
            return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False.
        Returns:
            tuple[torch.Tensor, torch.Tensor]:
                - Indices of words in the LUT.
                - And a mask indicating where the padding tokens are
        """
        output, lengths = [], []
        texts = deepcopy(texts)
        for i, text in enumerate(texts):
            # if current sample doesn't have a certain attribute, replace with pad token
            if text is None:
                output.append(torch.Tensor([self.pad_idx]))
                lengths.append(0)
                continue

            # convert numbers to words
            text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text)  # type: ignore
            # normalize text
            text = self.nlp(text)  # type: ignore
            # remove stopwords
            if self.stopwords:
                text = [w for w in text if not w.is_stop]  # type: ignore
            # remove punctuation
            text = [w for w in text if w.text not in self.PUNCTUATION]  # type: ignore
            # lemmatize if needed
            text = [getattr(t, "lemma_" if self.lemma else "text") for t in text]  # type: ignore

            texts[i] = " ".join(text)
            lengths.append(len(text))
            # convert to tensor
            tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text])
            output.append(tokens)

        mask = length_to_mask(torch.IntTensor(lengths)).int()
        padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t()
        if return_text:
            return padded_output, mask, texts  # type: ignore
        return padded_output, mask


class NoopTokenizer(Tokenizer):
    """This tokenizer should be used for global conditioners such as: artist, genre, key, etc.
    The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split
    strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will
    split it to ["Jeff", "Buckley"] and return an index per word.

    For example:
    ["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101]
    ["Metal", "Rock", "Classical"] => [0, 223, 51]
    """
    def __init__(self, n_bins: int, pad_idx: int = 0):
        self.n_bins = n_bins
        self.pad_idx = pad_idx

    def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        output, lengths = [], []
        for text in texts:
            # if current sample doesn't have a certain attribute, replace with pad token
            if text is None:
                output.append(self.pad_idx)
                lengths.append(0)
            else:
                output.append(hash_trick(text, self.n_bins))
                lengths.append(1)

        tokens = torch.LongTensor(output).unsqueeze(1)
        mask = length_to_mask(torch.IntTensor(lengths)).int()
        return tokens, mask


class BaseConditioner(nn.Module):
    """Base model for all conditioner modules.
    We allow the output dim to be different than the hidden dim for two reasons:
    1) keep our LUTs small when the vocab is large;
    2) make all condition dims consistent.

    Args:
        dim (int): Hidden dim of the model.
        output_dim (int): Output dim of the conditioner.
    """
    def __init__(self, dim: int, output_dim: int):
        super().__init__()
        self.dim = dim
        self.output_dim = output_dim
        self.output_proj = nn.Linear(dim, output_dim)

    def tokenize(self, *args, **kwargs) -> tp.Any:
        """Should be any part of the processing that will lead to a synchronization
        point, e.g. BPE tokenization with transfer to the GPU.

        The returned value will be saved and return later when calling forward().
        """
        raise NotImplementedError()

    def forward(self, inputs: tp.Any) -> ConditionType:
        """Gets input that should be used as conditioning (e.g, genre, description or a waveform).
        Outputs a ConditionType, after the input data was embedded as a dense vector.

        Returns:
            ConditionType:
                - A tensor of size [B, T, D] where B is the batch size, T is the length of the
                  output embedding and D is the dimension of the embedding.
                - And a mask indicating where the padding tokens.
        """
        raise NotImplementedError()


class TextConditioner(BaseConditioner):
    ...


class LUTConditioner(TextConditioner):
    """Lookup table TextConditioner.

    Args:
        n_bins (int): Number of bins.
        dim (int): Hidden dim of the model (text-encoder/LUT).
        output_dim (int): Output dim of the conditioner.
        tokenizer (str): Name of the tokenizer.
        pad_idx (int, optional): Index for padding token. Defaults to 0.
    """
    def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0):
        super().__init__(dim, output_dim)
        self.embed = nn.Embedding(n_bins, dim)
        self.tokenizer: Tokenizer
        if tokenizer == 'whitespace':
            self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx)
        elif tokenizer == 'noop':
            self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx)
        else:
            raise ValueError(f"unrecognized tokenizer `{tokenizer}`.")

    def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        device = self.embed.weight.device
        tokens, mask = self.tokenizer(x)
        tokens, mask = tokens.to(device), mask.to(device)
        return tokens, mask

    def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType:
        tokens, mask = inputs
        embeds = self.embed(tokens)
        embeds = self.output_proj(embeds)
        embeds = (embeds * mask.unsqueeze(-1))
        return embeds, mask


class T5Conditioner(TextConditioner):
    """T5-based TextConditioner.

    Args:
        name (str): Name of the T5 model.
        output_dim (int): Output dim of the conditioner.
        finetune (bool): Whether to fine-tune T5 at train time.
        device (str): Device for T5 Conditioner.
        autocast_dtype (tp.Optional[str], optional): Autocast dtype.
        word_dropout (float, optional): Word dropout probability.
        normalize_text (bool, optional): Whether to apply text normalization.
    """
    MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
              "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
              "google/flan-t5-xl", "google/flan-t5-xxl"]
    MODELS_DIMS = {
        "t5-small": 512,
        "t5-base": 768,
        "t5-large": 1024,
        "t5-3b": 1024,
        "t5-11b": 1024,
        "google/flan-t5-small": 512,
        "google/flan-t5-base": 768,
        "google/flan-t5-large": 1024,
        "google/flan-t5-3b": 1024,
        "google/flan-t5-11b": 1024,
    }

    def __init__(self, name: str, output_dim: int, finetune: bool, device: str,
                 autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0.,
                 normalize_text: bool = False):
        assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})"
        super().__init__(self.MODELS_DIMS[name], output_dim)
        self.device = device
        self.name = name
        self.finetune = finetune
        self.word_dropout = word_dropout
        if autocast_dtype is None or self.device == 'cpu':
            self.autocast = TorchAutocast(enabled=False)
            if self.device != 'cpu':
                logger.warning("T5 has no autocast, this might lead to NaN")
        else:
            dtype = getattr(torch, autocast_dtype)
            assert isinstance(dtype, torch.dtype)
            logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}")
            self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
        # Let's disable logging temporarily because T5 will vomit some errors otherwise.
        # thanks https://gist.github.com/simon-weber/7853144
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                self.t5_tokenizer = T5Tokenizer.from_pretrained(name)
                t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune)
            finally:
                logging.disable(previous_level)
        if finetune:
            self.t5 = t5
        else:
            # this makes sure that the t5 models is not part
            # of the saved checkpoint
            self.__dict__['t5'] = t5.to(device)

        self.normalize_text = normalize_text
        if normalize_text:
            self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True)

    def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
        # if current sample doesn't have a certain attribute, replace with empty string
        entries: tp.List[str] = [xi if xi is not None else "" for xi in x]
        if self.normalize_text:
            _, _, entries = self.text_normalizer(entries, return_text=True)
        if self.word_dropout > 0. and self.training:
            new_entries = []
            for entry in entries:
                words = [word for word in entry.split(" ") if random.random() >= self.word_dropout]
                new_entries.append(" ".join(words))
            entries = new_entries

        empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""])

        inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device)
        mask = inputs['attention_mask']
        mask[empty_idx, :] = 0  # zero-out index where the input is non-existant
        return inputs

    def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
        mask = inputs['attention_mask']
        with torch.set_grad_enabled(self.finetune), self.autocast:
            embeds = self.t5(**inputs).last_hidden_state
        embeds = self.output_proj(embeds.to(self.output_proj.weight))
        embeds = (embeds * mask.unsqueeze(-1))
        return embeds, mask


class WaveformConditioner(BaseConditioner):
    """Base class for all conditioners that take a waveform as input.
    Classes that inherit must implement `_get_wav_embedding` that outputs
    a continuous tensor, and `_downsampling_factor` that returns the down-sampling
    factor of the embedding model.

    Args:
        dim (int): The internal representation dimension.
        output_dim (int): Output dimension.
        device (tp.Union[torch.device, str]): Device.
    """
    def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]):
        super().__init__(dim, output_dim)
        self.device = device

    def tokenize(self, x: WavCondition) -> WavCondition:
        wav, length, sample_rate, path, seek_time = x
        assert length is not None
        return WavCondition(wav.to(self.device), length.to(self.device), sample_rate, path, seek_time)

    def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
        """Gets as input a WavCondition and returns a dense embedding."""
        raise NotImplementedError()

    def _downsampling_factor(self):
        """Returns the downsampling factor of the embedding model."""
        raise NotImplementedError()

    def forward(self, x: WavCondition) -> ConditionType:
        """Extract condition embedding and mask from a waveform and its metadata.
        Args:
            x (WavCondition): Waveform condition containing raw waveform and metadata.
        Returns:
            ConditionType: a dense vector representing the conditioning along with its mask
        """
        wav, lengths, *_ = x
        with torch.no_grad():
            embeds = self._get_wav_embedding(x)
        embeds = embeds.to(self.output_proj.weight)
        embeds = self.output_proj(embeds)

        if lengths is not None:
            lengths = lengths / self._downsampling_factor()
            mask = length_to_mask(lengths, max_len=embeds.shape[1]).int()  # type: ignore
        else:
            mask = torch.ones_like(embeds)
        embeds = (embeds * mask.unsqueeze(2).to(self.device))

        return embeds, mask


class ChromaStemConditioner(WaveformConditioner):
    """Chroma conditioner based on stems.
    The ChromaStemConditioner uses DEMUCS to first filter out drums and bass, as
    the drums and bass often dominate the chroma leading to the chroma features
    not containing information about the melody.

    Args:
        output_dim (int): Output dimension for the conditioner.
        sample_rate (int): Sample rate for the chroma extractor.
        n_chroma (int): Number of chroma bins for the chroma extractor.
        radix2_exp (int): Size of stft window for the chroma extractor (power of 2, e.g. 12 -> 2^12).
        duration (int): duration used during training. This is later used for correct padding
            in case we are using chroma as prefix.
        match_len_on_eval (bool, optional): if True then all chromas are padded to the training
            duration. Defaults to False.
        eval_wavs (str, optional): path to a dataset manifest with waveform, this waveforms are used as
            conditions during eval (for cases where we don't want to leak test conditions like MusicCaps).
            Defaults to None.
        n_eval_wavs (int, optional): limits the number of waveforms used for conditioning. Defaults to 0.
        device (tp.Union[torch.device, str], optional): Device for the conditioner.
        **kwargs: Additional parameters for the chroma extractor.
    """
    def __init__(self, output_dim: int, sample_rate: int, n_chroma: int, radix2_exp: int,
                 duration: float, match_len_on_eval: bool = True, eval_wavs: tp.Optional[str] = None,
                 n_eval_wavs: int = 0, cache_path: tp.Optional[tp.Union[str, Path]] = None,
                 device: tp.Union[torch.device, str] = 'cpu', **kwargs):
        from demucs import pretrained
        super().__init__(dim=n_chroma, output_dim=output_dim, device=device)
        self.autocast = TorchAutocast(enabled=device != 'cpu', device_type=self.device, dtype=torch.float32)
        self.sample_rate = sample_rate
        self.match_len_on_eval = match_len_on_eval
        self.duration = duration
        self.__dict__['demucs'] = pretrained.get_model('htdemucs').to(device)
        stem_sources: list = self.demucs.sources  # type: ignore
        self.stem_indices = torch.LongTensor([stem_sources.index('vocals'), stem_sources.index('other')]).to(device)
        self.chroma = ChromaExtractor(sample_rate=sample_rate, n_chroma=n_chroma,
                                      radix2_exp=radix2_exp, **kwargs).to(device)
        self.chroma_len = self._get_chroma_len()
        self.eval_wavs: tp.Optional[torch.Tensor] = self._load_eval_wavs(eval_wavs, n_eval_wavs)
        self.cache = None
        if cache_path is not None:
            self.cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
                                        compute_embed_fn=self._get_full_chroma_for_cache,
                                        extract_embed_fn=self._extract_chroma_chunk)

    def _downsampling_factor(self) -> int:
        return self.chroma.winhop

    def _load_eval_wavs(self, path: tp.Optional[str], num_samples: int) -> tp.Optional[torch.Tensor]:
        """Load pre-defined waveforms from a json.
        These waveforms will be used for chroma extraction during evaluation.
        This is done to make the evaluation on MusicCaps fair (we shouldn't see the chromas of MusicCaps).
        """
        if path is None:
            return None

        logger.info(f"Loading evaluation wavs from {path}")
        from audiocraft.data.audio_dataset import AudioDataset
        dataset: AudioDataset = AudioDataset.from_meta(
            path, segment_duration=self.duration, min_audio_duration=self.duration,
            sample_rate=self.sample_rate, channels=1)

        if len(dataset) > 0:
            eval_wavs = dataset.collater([dataset[i] for i in range(num_samples)]).to(self.device)
            logger.info(f"Using {len(eval_wavs)} evaluation wavs for chroma-stem conditioner")
            return eval_wavs
        else:
            raise ValueError("Could not find evaluation wavs, check lengths of wavs")

    def reset_eval_wavs(self, eval_wavs: tp.Optional[torch.Tensor]) -> None:
        self.eval_wavs = eval_wavs

    def has_eval_wavs(self) -> bool:
        return self.eval_wavs is not None

    def _sample_eval_wavs(self, num_samples: int) -> torch.Tensor:
        """Sample wavs from a predefined list."""
        assert self.eval_wavs is not None, "Cannot sample eval wavs as no eval wavs provided."
        total_eval_wavs = len(self.eval_wavs)
        out = self.eval_wavs
        if num_samples > total_eval_wavs:
            out = self.eval_wavs.repeat(num_samples // total_eval_wavs + 1, 1, 1)
        return out[torch.randperm(len(out))][:num_samples]

    def _get_chroma_len(self) -> int:
        """Get length of chroma during training."""
        dummy_wav = torch.zeros((1, int(self.sample_rate * self.duration)), device=self.device)
        dummy_chr = self.chroma(dummy_wav)
        return dummy_chr.shape[1]

    @torch.no_grad()
    def _get_stemmed_wav(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
        """Get parts of the wav that holds the melody, extracting the main stems from the wav."""
        from demucs.apply import apply_model
        from demucs.audio import convert_audio
        with self.autocast:
            wav = convert_audio(
                wav, sample_rate, self.demucs.samplerate, self.demucs.audio_channels)  # type: ignore
            stems = apply_model(self.demucs, wav, device=self.device)
            stems = stems[:, self.stem_indices]  # extract relevant stems for melody conditioning
            mix_wav = stems.sum(1)  # merge extracted stems to single waveform
            mix_wav = convert_audio(mix_wav, self.demucs.samplerate, self.sample_rate, 1)  # type: ignore
            return mix_wav

    @torch.no_grad()
    def _extract_chroma(self, wav: torch.Tensor) -> torch.Tensor:
        """Extract chroma features from the waveform."""
        with self.autocast:
            return self.chroma(wav)

    @torch.no_grad()
    def _compute_wav_embedding(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
        """Compute wav embedding, applying stem and chroma extraction."""
        # avoid 0-size tensors when we are working with null conds
        if wav.shape[-1] == 1:
            return self._extract_chroma(wav)
        stems = self._get_stemmed_wav(wav, sample_rate)
        chroma = self._extract_chroma(stems)
        return chroma

    @torch.no_grad()
    def _get_full_chroma_for_cache(self, path: tp.Union[str, Path], x: WavCondition, idx: int) -> torch.Tensor:
        """Extract chroma from the whole audio waveform at the given path."""
        wav, sr = audio_read(path)
        wav = wav[None].to(self.device)
        wav = convert_audio(wav, sr, self.sample_rate, to_channels=1)
        chroma = self._compute_wav_embedding(wav, self.sample_rate)[0]
        return chroma

    def _extract_chroma_chunk(self, full_chroma: torch.Tensor, x: WavCondition, idx: int) -> torch.Tensor:
        """Extract a chunk of chroma from the full chroma derived from the full waveform."""
        wav_length = x.wav.shape[-1]
        seek_time = x.seek_time[idx]
        assert seek_time is not None, (
            "WavCondition seek_time is required "
            "when extracting chroma chunks from pre-computed chroma.")
        full_chroma = full_chroma.float()
        frame_rate = self.sample_rate / self._downsampling_factor()
        target_length = int(frame_rate * wav_length / self.sample_rate)
        index = int(frame_rate * seek_time)
        out = full_chroma[index: index + target_length]
        out = F.pad(out[None], (0, 0, 0, target_length - out.shape[0]))[0]
        return out.to(self.device)

    @torch.no_grad()
    def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
        """Get the wav embedding from the WavCondition.
        The conditioner will either extract the embedding on-the-fly computing it from the condition wav directly
        or will rely on the embedding cache to load the pre-computed embedding if relevant.
        """
        sampled_wav: tp.Optional[torch.Tensor] = None
        if not self.training and self.eval_wavs is not None:
            warn_once(logger, "Using precomputed evaluation wavs!")
            sampled_wav = self._sample_eval_wavs(len(x.wav))

        no_undefined_paths = all(p is not None for p in x.path)
        no_nullified_cond = x.wav.shape[-1] > 1
        if sampled_wav is not None:
            chroma = self._compute_wav_embedding(sampled_wav, self.sample_rate)
        elif self.cache is not None and no_undefined_paths and no_nullified_cond:
            paths = [Path(p) for p in x.path if p is not None]
            chroma = self.cache.get_embed_from_cache(paths, x)
        else:
            assert all(sr == x.sample_rate[0] for sr in x.sample_rate), "All sample rates in batch should be equal."
            chroma = self._compute_wav_embedding(x.wav, x.sample_rate[0])

        if self.match_len_on_eval:
            B, T, C = chroma.shape
            if T > self.chroma_len:
                chroma = chroma[:, :self.chroma_len]
                logger.debug(f"Chroma was truncated to match length! ({T} -> {chroma.shape[1]})")
            elif T < self.chroma_len:
                n_repeat = int(math.ceil(self.chroma_len / T))
                chroma = chroma.repeat(1, n_repeat, 1)
                chroma = chroma[:, :self.chroma_len]
                logger.debug(f"Chroma was repeated to match length! ({T} -> {chroma.shape[1]})")

        return chroma

    def tokenize(self, x: WavCondition) -> WavCondition:
        """Apply WavConditioner tokenization and populate cache if needed."""
        x = super().tokenize(x)
        no_undefined_paths = all(p is not None for p in x.path)
        if self.cache is not None and no_undefined_paths:
            paths = [Path(p) for p in x.path if p is not None]
            self.cache.populate_embed_cache(paths, x)
        return x


class JointEmbeddingConditioner(BaseConditioner):
    """Joint embedding conditioning supporting both audio or text conditioning.

    Args:
        dim (int): Dimension.
        output_dim (int): Output dimension.
        device (str): Device.
        attribute (str): Attribute used by the conditioner.
        autocast_dtype (str): Autocast for the conditioner.
        quantize (bool): Whether to quantize the CLAP embedding.
        n_q (int): Number of residual quantizers (used if quantize is true).
        bins (int): Quantizers' codebooks size (used if quantize is true).
        kwargs: Additional parameters for residual vector quantizer.
    """
    def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
                 autocast_dtype: tp.Optional[str] = 'float32', quantize: bool = True,
                 n_q: int = 12, bins: int = 1024, **kwargs):
        super().__init__(dim=dim, output_dim=output_dim)
        self.device = device
        self.attribute = attribute
        if autocast_dtype is None or device == 'cpu':
            self.autocast = TorchAutocast(enabled=False)
            logger.warning("JointEmbeddingConditioner has no autocast, this might lead to NaN.")
        else:
            dtype = getattr(torch, autocast_dtype)
            assert isinstance(dtype, torch.dtype)
            logger.info(f"JointEmbeddingConditioner will be evaluated with autocast as {autocast_dtype}.")
            self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
        # residual vector quantizer to discretize the conditioned embedding
        self.quantizer: tp.Optional[ResidualVectorQuantizer] = None
        if quantize:
            self.quantizer = ResidualVectorQuantizer(dim, n_q=n_q, bins=bins, **kwargs)

    def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Get joint embedding in latent space from the inputs.

        Returns:
            tuple[torch.Tensor, torch.Tensor]: Tensor for the latent embedding
                and corresponding empty indexes.
        """
        raise NotImplementedError()

    def forward(self, x: JointEmbedCondition) -> ConditionType:
        with self.autocast:
            embed, empty_idx = self._get_embed(x)
            if self.quantizer is not None:
                embed = embed.view(-1, self.dim, 1)
                q_res = self.quantizer(embed, frame_rate=1)
                out_embed = q_res.x.view(-1, self.dim)
            else:
                out_embed = embed
            out_embed = self.output_proj(out_embed).view(-1, 1, self.output_dim)
            mask = torch.ones(*out_embed.shape[:2], device=out_embed.device)
            mask[empty_idx, :] = 0  # zero-out index where the input is non-existant
            out_embed = (out_embed * mask.unsqueeze(-1))
            return out_embed, mask

    def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
        return x


class CLAPEmbeddingConditioner(JointEmbeddingConditioner):
    """Joint Embedding conditioner based on pre-trained CLAP model.

    This CLAP-based conditioner supports a caching mechanism
    over the computed embeddings for faster training.

    Args:
        dim (int): Dimension.
        output_dim (int): Output dimension.
        device (str): Device.
        attribute (str): Attribute used by the conditioner.
        quantize (bool): Whether to quantize the CLAP embedding.
        n_q (int): Number of residual quantizers (used if quantize is true).
        bins (int): Quantizers' codebooks size (used if quantize is true).
        checkpoint (str): Path to CLAP checkpoint.
        model_arch (str): CLAP model architecture.
        enable_fusion (bool): Enable fusion for CLAP model.
        sample_rate (int): Sample rate used by CLAP model.
        max_audio_length (float): Maximum audio length for CLAP model.
        audio_stride (float): Stride to use for getting a CLAP embedding on the full sequence.
        normalize (bool): Whether to normalize the CLAP embedding.
        text_p (float): Probability of using text representation instead of audio at train time.
        batch_size (Optional[int]): Batch size for CLAP embedding computation.
        autocast_dtype (str): Autocast for the conditioner.
        cache_path (Optional[str]): Path for pre-computed embeddings caching.
        kwargs: Additional parameters for residual vector quantizer.
    """
    def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
                 quantize: bool, n_q: int, bins: int, checkpoint: tp.Union[str, Path], model_arch: str,
                 enable_fusion: bool, sample_rate: int, max_audio_length: int, audio_stride: int,
                 normalize: bool, text_p: bool, batch_size: tp.Optional[int] = None,
                 autocast_dtype: tp.Optional[str] = 'float32', cache_path: tp.Optional[str] = None, **kwargs):
        try:
            import laion_clap  # type: ignore
        except ImportError:
            raise ImportError("Please install CLAP to use the CLAPEmbeddingConditioner: 'pip install laion_clap'")
        checkpoint = AudioCraftEnvironment.resolve_reference_path(checkpoint)
        clap_tokenize = RobertaTokenizer.from_pretrained('roberta-base')
        clap_model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=model_arch)
        load_clap_state_dict(clap_model, checkpoint)
        clap_model.eval()
        clap_model.to(device)
        super().__init__(dim=dim, output_dim=output_dim, device=device, attribute=attribute,
                         autocast_dtype=autocast_dtype, quantize=quantize, n_q=n_q, bins=bins,
                         **kwargs)
        self.checkpoint = checkpoint
        self.enable_fusion = enable_fusion
        self.model_arch = model_arch
        self.clap: laion_clap.CLAP_Module
        self.clap_tokenize: RobertaTokenizer
        self.clap_sample_rate = sample_rate
        self.clap_max_frames = int(self.clap_sample_rate * max_audio_length)
        self.clap_stride = int(self.clap_sample_rate * audio_stride)
        self.batch_size = batch_size or 1
        self.normalize = normalize
        self.text_p = text_p
        self.__dict__['clap_tokenize'] = clap_tokenize
        self.__dict__['clap'] = clap_model
        self.wav_cache, self.text_cache = None, None
        if cache_path is not None:
            self.wav_cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
                                            compute_embed_fn=self._get_wav_embedding_for_cache,
                                            extract_embed_fn=self._extract_wav_embedding_chunk)
            self.text_cache = EmbeddingCache(Path(cache_path) / 'text', self.device,
                                             compute_embed_fn=self._get_text_embedding_for_cache)

    def _tokenizer(self, texts: tp.Union[str, tp.List[str]]) -> dict:
        # we use the default params from CLAP module here as well
        return self.clap_tokenize(texts, padding="max_length", truncation=True, max_length=77, return_tensors="pt")

    def _compute_text_embedding(self, text: tp.List[str]) -> torch.Tensor:
        """Compute text embedding from CLAP model on a given a batch of text.

        Args:
            text (list[str]): List of text for the batch, with B items.
        Returns:
            torch.Tensor: CLAP embedding derived from text, of shape [B, 1, D], with D the CLAP embedding dimension.
        """
        with torch.no_grad():
            embed = self.clap.get_text_embedding(text, tokenizer=self._tokenizer, use_tensor=True)
            return embed.view(embed.size(0), 1, embed.size(-1))

    def _get_text_embedding_for_cache(self, path: tp.Union[Path, str],
                                      x: JointEmbedCondition, idx: int) -> torch.Tensor:
        """Get text embedding function for the cache."""
        text = x.text[idx]
        text = text if text is not None else ""
        return self._compute_text_embedding([text])[0]

    def _preprocess_wav(self, wav: torch.Tensor, length: torch.Tensor, sample_rates: tp.List[int]) -> torch.Tensor:
        """Preprocess wav to expected format by CLAP model.

        Args:
            wav (torch.Tensor): Audio wav, of shape [B, C, T].
            length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
            sample_rates (list[int]): Sample rates for each sample in the batch
        Returns:
            torch.Tensor: Audio wav of shape [B, T].
        """
        assert wav.dim() == 3, "Expecting wav to be [B, C, T]"
        if sample_rates is not None:
            _wav = []
            for i, audio in enumerate(wav):
                sr = sample_rates[i]
                audio = convert_audio(audio, from_rate=sr, to_rate=self.clap_sample_rate, to_channels=1)
                _wav.append(audio)
            wav = torch.stack(_wav, dim=0)
        wav = wav.mean(dim=1)
        return wav

    def _compute_wav_embedding(self, wav: torch.Tensor, length: torch.Tensor,
                               sample_rates: tp.List[int], reduce_mean: bool = False) -> torch.Tensor:
        """Compute audio wave embedding from CLAP model.

        Since CLAP operates on a fixed sequence length audio inputs and we need to process longer audio sequences,
        we calculate the wav embeddings on `clap_max_frames` windows with `clap_stride`-second stride and
        average the resulting embeddings.

        Args:
            wav (torch.Tensor): Audio wav, of shape [B, C, T].
            length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
            sample_rates (list[int]): Sample rates for each sample in the batch.
            reduce_mean (bool): Whether to get the average tensor.
        Returns:
            torch.Tensor: Audio embedding of shape [B, F, D], F being the number of chunks, D the dimension.
        """
        with torch.no_grad():
            wav = self._preprocess_wav(wav, length, sample_rates)
            B, T = wav.shape
            if T >= self.clap_max_frames:
                wav = wav.unfold(-1, self.clap_max_frames, self.clap_stride)  # [B, F, T]
            else:
                wav = wav.view(-1, 1, T)  # [B, F, T] with F=1
            wav = einops.rearrange(wav, 'b f t -> (b f) t')
            embed_list = []
            for i in range(0, wav.size(0), self.batch_size):
                _wav = wav[i:i+self.batch_size, ...]
                _embed = self.clap.get_audio_embedding_from_data(_wav, use_tensor=True)
                embed_list.append(_embed)
            embed = torch.cat(embed_list, dim=0)
            embed = einops.rearrange(embed, '(b f) d -> b f d', b=B)
            if reduce_mean:
                embed = embed.mean(dim=1, keepdim=True)
            return embed  # [B, F, D] with F=1 if reduce_mean is True

    def _get_wav_embedding_for_cache(self, path: tp.Union[str, Path],
                                     x: JointEmbedCondition, idx: int) -> torch.Tensor:
        """Compute audio wave embedding for the cache.
        The embedding is computed on a given audio read from file.

        Args:
            path (str or Path): Path to the full audio file.
        Returns:
            torch.Tensor: Single-item tensor of shape [F, D], F being the number of chunks, D the dimension.
        """
        wav, sr = audio_read(path)  # [C, T]
        wav = wav.unsqueeze(0).to(self.device)  # [1, C, T]
        wav_len = torch.LongTensor([wav.shape[-1]]).to(self.device)
        embed = self._compute_wav_embedding(wav, wav_len, [sr], reduce_mean=False)  # [B, F, D]
        return embed.squeeze(0)  # [F, D]

    def _extract_wav_embedding_chunk(self, full_embed: torch.Tensor, x: JointEmbedCondition, idx: int) -> torch.Tensor:
        """Extract the chunk of embedding matching the seek_time and length from the full CLAP audio embedding.

        Args:
            full_embed (torch.Tensor): CLAP embedding computed on the full wave, of shape [F, D].
            x (JointEmbedCondition): Joint embedding condition for the full batch.
            idx (int): Index considered for the given embedding to extract.
        Returns:
            torch.Tensor: Wav embedding averaged on sliding window, of shape [1, D].
        """
        sample_rate = x.sample_rate[idx]
        seek_time = x.seek_time[idx]
        seek_time = 0. if seek_time is None else seek_time
        clap_stride = int(self.clap_stride / self.clap_sample_rate) * sample_rate
        end_seek_time = seek_time + self.clap_max_frames / self.clap_sample_rate
        start_offset = int(seek_time * sample_rate // clap_stride)
        end_offset = int(end_seek_time * sample_rate // clap_stride)
        wav_embed = full_embed[start_offset:end_offset, ...]
        wav_embed = wav_embed.mean(dim=0, keepdim=True)
        return wav_embed.to(self.device)  # [F, D]

    def _get_text_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
        """Get CLAP embedding from a batch of text descriptions."""
        no_nullified_cond = x.wav.shape[-1] > 1  # we don't want to read from cache when condition dropout
        if self.text_cache is not None and no_nullified_cond:
            assert all(p is not None for p in x.path), "Cache requires all JointEmbedCondition paths to be provided"
            paths = [Path(p) for p in x.path if p is not None]
            embed = self.text_cache.get_embed_from_cache(paths, x)
        else:
            text = [xi if xi is not None else "" for xi in x.text]
            embed = self._compute_text_embedding(text)
        if self.normalize:
            embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
        return embed

    def _get_wav_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
        """Get CLAP embedding from a batch of audio tensors (and corresponding sample rates)."""
        no_undefined_paths = all(p is not None for p in x.path)
        no_nullified_cond = x.wav.shape[-1] > 1  # we don't want to read from cache when condition dropout
        if self.wav_cache is not None and no_undefined_paths and no_nullified_cond:
            paths = [Path(p) for p in x.path if p is not None]
            embed = self.wav_cache.get_embed_from_cache(paths, x)
        else:
            embed = self._compute_wav_embedding(x.wav, x.length, x.sample_rate, reduce_mean=True)
        if self.normalize:
            embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
        return embed

    def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
        # Trying to limit as much as possible sync points when the cache is warm.
        no_undefined_paths = all(p is not None for p in x.path)
        if self.wav_cache is not None and no_undefined_paths:
            assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
            paths = [Path(p) for p in x.path if p is not None]
            self.wav_cache.populate_embed_cache(paths, x)
        if self.text_cache is not None and no_undefined_paths:
            assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
            paths = [Path(p) for p in x.path if p is not None]
            self.text_cache.populate_embed_cache(paths, x)
        return x

    def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Extract shared latent representation from either the wav or the text using CLAP."""
        # decide whether to use text embedding at train time or not
        use_text_embed = random.random() < self.text_p
        if self.training and not use_text_embed:
            embed = self._get_wav_embedding(x)
            empty_idx = torch.LongTensor([])  # we assume we always have the audio wav
        else:
            embed = self._get_text_embedding(x)
            empty_idx = torch.LongTensor([i for i, xi in enumerate(x.text) if xi is None or xi == ""])
        return embed, empty_idx


def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes:
    """Utility function for nullifying an attribute inside an ConditioningAttributes object.
    If the condition is of type "wav", then nullify it using `nullify_condition` function.
    If the condition is of any other type, set its value to None.
    Works in-place.
    """
    if condition_type not in ['text', 'wav', 'joint_embed']:
        raise ValueError(
            "dropout_condition got an unexpected condition type!"
            f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'"
        )

    if condition not in getattr(sample, condition_type):
        raise ValueError(
            "dropout_condition received an unexpected condition!"
            f" expected wav={sample.wav.keys()} and text={sample.text.keys()}"
            f" but got '{condition}' of type '{condition_type}'!"
        )

    if condition_type == 'wav':
        wav_cond = sample.wav[condition]
        sample.wav[condition] = nullify_wav(wav_cond)
    elif condition_type == 'joint_embed':
        embed = sample.joint_embed[condition]
        sample.joint_embed[condition] = nullify_joint_embed(embed)
    else:
        sample.text[condition] = None

    return sample


class DropoutModule(nn.Module):
    """Base module for all dropout modules."""
    def __init__(self, seed: int = 1234):
        super().__init__()
        self.rng = torch.Generator()
        self.rng.manual_seed(seed)


class AttributeDropout(DropoutModule):
    """Dropout with a given probability per attribute.
    This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
    to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
    This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
    must also be dropped.

    Args:
        p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
            ...
            "genre": 0.1,
            "artist": 0.5,
            "wav": 0.25,
            ...
        active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
        seed (int, optional): Random seed.
    """
    def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
        super().__init__(seed=seed)
        self.active_on_eval = active_on_eval
        # construct dict that return the values from p otherwise 0
        self.p = {}
        for condition_type, probs in p.items():
            self.p[condition_type] = defaultdict(lambda: 0, probs)

    def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
        """
        Args:
            samples (list[ConditioningAttributes]): List of conditions.
        Returns:
            list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
        """
        if not self.training and not self.active_on_eval:
            return samples

        samples = deepcopy(samples)
        for condition_type, ps in self.p.items():  # for condition types [text, wav]
            for condition, p in ps.items():  # for attributes of each type (e.g., [artist, genre])
                if torch.rand(1, generator=self.rng).item() < p:
                    for sample in samples:
                        dropout_condition(sample, condition_type, condition)
        return samples

    def __repr__(self):
        return f"AttributeDropout({dict(self.p)})"


class ClassifierFreeGuidanceDropout(DropoutModule):
    """Classifier Free Guidance dropout.
    All attributes are dropped with the same probability.

    Args:
        p (float): Probability to apply condition dropout during training.
        seed (int): Random seed.
    """
    def __init__(self, p: float, seed: int = 1234):
        super().__init__(seed=seed)
        self.p = p

    def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
        """
        Args:
            samples (list[ConditioningAttributes]): List of conditions.
        Returns:
            list[ConditioningAttributes]: List of conditions after all attributes were set to None.
        """
        if not self.training:
            return samples

        # decide on which attributes to drop in a batched fashion
        drop = torch.rand(1, generator=self.rng).item() < self.p
        if not drop:
            return samples

        # nullify conditions of all attributes
        samples = deepcopy(samples)
        for condition_type in ["wav", "text"]:
            for sample in samples:
                for condition in sample.attributes[condition_type]:
                    dropout_condition(sample, condition_type, condition)
        return samples

    def __repr__(self):
        return f"ClassifierFreeGuidanceDropout(p={self.p})"


class ConditioningProvider(nn.Module):
    """Prepare and provide conditions given all the supported conditioners.

    Args:
        conditioners (dict): Dictionary of conditioners.
        device (torch.device or str, optional): Device for conditioners and output condition types.
    """
    def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"):
        super().__init__()
        self.device = device
        self.conditioners = nn.ModuleDict(conditioners)

    @property
    def joint_embed_conditions(self):
        return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)]

    @property
    def has_joint_embed_conditions(self):
        return len(self.joint_embed_conditions) > 0

    @property
    def text_conditions(self):
        return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]

    @property
    def wav_conditions(self):
        return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)]

    @property
    def has_wav_condition(self):
        return len(self.wav_conditions) > 0

    def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
        """Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
        This should be called before starting any real GPU work to avoid synchronization points.
        This will return a dict matching conditioner names to their arbitrary tokenized representations.

        Args:
            inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
                text and wav conditions.
        """
        assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
            "Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
            f" but types were {set([type(x) for x in inputs])}"
        )

        output = {}
        text = self._collate_text(inputs)
        wavs = self._collate_wavs(inputs)
        joint_embeds = self._collate_joint_embeds(inputs)

        assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), (
            f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
            f"got {text.keys(), wavs.keys(), joint_embeds.keys()}"
        )

        for attribute, batch in chain(text.items(), wavs.items(), joint_embeds.items()):
            output[attribute] = self.conditioners[attribute].tokenize(batch)
        return output

    def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]:
        """Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
        The output is for example:
        {
            "genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
            "description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
            ...
        }

        Args:
            tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
        """
        output = {}
        for attribute, inputs in tokenized.items():
            condition, mask = self.conditioners[attribute](inputs)
            output[attribute] = (condition, mask)
        return output

    def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
        """Given a list of ConditioningAttributes objects, compile a dictionary where the keys
        are the attributes and the values are the aggregated input per attribute.
        For example:
        Input:
        [
            ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
            ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...),
        ]
        Output:
        {
            "genre": ["Rock", "Hip-hop"],
            "description": ["A rock song with a guitar solo", "A hip-hop verse"]
        }

        Args:
            samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
        Returns:
            dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
        """
        out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
        texts = [x.text for x in samples]
        for text in texts:
            for condition in self.text_conditions:
                out[condition].append(text[condition])
        return out

    def _collate_wavs(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, WavCondition]:
        """Generate a dict where the keys are attributes by which we fetch similar wavs,
        and the values are Tensors of wavs according to said attributes.

        *Note*: by the time the samples reach this function, each sample should have some waveform
        inside the "wav" attribute. It should be either:
        1. A real waveform
        2. A null waveform due to the sample having no similar waveforms (nullified by the dataset)
        3. A null waveform due to it being dropped in a dropout module (nullified by dropout)

        Args:
            samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
        Returns:
            dict[str, WavCondition]: A dictionary mapping an attribute name to wavs.
        """
        wavs = defaultdict(list)
        lengths = defaultdict(list)
        sample_rates = defaultdict(list)
        paths = defaultdict(list)
        seek_times = defaultdict(list)
        out: tp.Dict[str, WavCondition] = {}

        for sample in samples:
            for attribute in self.wav_conditions:
                wav, length, sample_rate, path, seek_time = sample.wav[attribute]
                assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]"
                assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1"
                # mono-channel conditioning
                wav = wav.mean(1, keepdim=True)  # [1, 1, T]
                wavs[attribute].append(wav.flatten())  # [T]
                lengths[attribute].append(length)
                sample_rates[attribute].extend(sample_rate)
                paths[attribute].extend(path)
                seek_times[attribute].extend(seek_time)

        # stack all wavs to a single tensor
        for attribute in self.wav_conditions:
            stacked_wav, _ = collate(wavs[attribute], dim=0)
            out[attribute] = WavCondition(
                stacked_wav.unsqueeze(1), torch.cat(lengths[attribute]), sample_rates[attribute],
                paths[attribute], seek_times[attribute])

        return out

    def _collate_joint_embeds(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, JointEmbedCondition]:
        """Generate a dict where the keys are attributes by which we compute joint embeddings,
        and the values are Tensors of pre-computed embeddings and the corresponding text attributes.

        Args:
            samples (list[ConditioningAttributes]): List of ConditioningAttributes samples.
        Returns:
            A dictionary mapping an attribute name to joint embeddings.
        """
        texts = defaultdict(list)
        wavs = defaultdict(list)
        lengths = defaultdict(list)
        sample_rates = defaultdict(list)
        paths = defaultdict(list)
        seek_times = defaultdict(list)
        channels: int = 0

        out = {}
        for sample in samples:
            for attribute in self.joint_embed_conditions:
                wav, text, length, sample_rate, path, seek_time = sample.joint_embed[attribute]
                assert wav.dim() == 3
                if channels == 0:
                    channels = wav.size(1)
                else:
                    assert channels == wav.size(1), "not all audio has same number of channels in batch"
                assert wav.size(0) == 1, "Expecting single-wav batch in the collate method"
                wav = einops.rearrange(wav, "b c t -> (b c t)")  # [1, C, T] => [C * T]
                wavs[attribute].append(wav)
                texts[attribute].extend(text)
                lengths[attribute].append(length)
                sample_rates[attribute].extend(sample_rate)
                paths[attribute].extend(path)
                seek_times[attribute].extend(seek_time)

        for attribute in self.joint_embed_conditions:
            stacked_texts = texts[attribute]
            stacked_paths = paths[attribute]
            stacked_seek_times = seek_times[attribute]
            stacked_wavs = pad_sequence(wavs[attribute]).to(self.device)
            stacked_wavs = einops.rearrange(stacked_wavs, "(c t) b -> b c t", c=channels)
            stacked_sample_rates = sample_rates[attribute]
            stacked_lengths = torch.cat(lengths[attribute]).to(self.device)
            assert stacked_lengths.size(0) == stacked_wavs.size(0)
            assert len(stacked_sample_rates) == stacked_wavs.size(0)
            assert len(stacked_texts) == stacked_wavs.size(0)
            out[attribute] = JointEmbedCondition(
                text=stacked_texts, wav=stacked_wavs,
                length=stacked_lengths, sample_rate=stacked_sample_rates,
                path=stacked_paths, seek_time=stacked_seek_times)

        return out


class ConditionFuser(StreamingModule):
    """Condition fuser handles the logic to combine the different conditions
    to the actual model input.

    Args:
        fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
            each condition. For example:
            {
                "prepend": ["description"],
                "sum": ["genre", "bpm"],
                "cross": ["description"],
            }
        cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention.
        cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used.
    """
    FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"]

    def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False,
                 cross_attention_pos_emb_scale: float = 1.0):
        super().__init__()
        assert all(
            [k in self.FUSING_METHODS for k in fuse2cond.keys()]
        ), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
        self.cross_attention_pos_emb = cross_attention_pos_emb
        self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale
        self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
        self.cond2fuse: tp.Dict[str, str] = {}
        for fuse_method, conditions in fuse2cond.items():
            for condition in conditions:
                self.cond2fuse[condition] = fuse_method

    def forward(
        self,
        input: torch.Tensor,
        conditions: tp.Dict[str, ConditionType]
    ) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        """Fuse the conditions to the provided model input.

        Args:
            input (torch.Tensor): Transformer input.
            conditions (dict[str, ConditionType]): Dict of conditions.
        Returns:
            tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
                after the conditions have been fused. The second output tensor is the tensor
                used for cross-attention or None if no cross attention inputs exist.
        """
        B, T, _ = input.shape

        if 'offsets' in self._streaming_state:
            first_step = False
            offsets = self._streaming_state['offsets']
        else:
            first_step = True
            offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device)

        assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
            f"given conditions contain unknown attributes for fuser, " \
            f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
        cross_attention_output = None
        for cond_type, (cond, cond_mask) in conditions.items():
            op = self.cond2fuse[cond_type]
            if op == 'sum':
                input += cond
            elif op == 'input_interpolate':
                cond = einops.rearrange(cond, "b t d -> b d t")
                cond = F.interpolate(cond, size=input.shape[1])
                input += einops.rearrange(cond, "b d t -> b t d")
            elif op == 'prepend':
                if first_step:
                    input = torch.cat([cond, input], dim=1)
            elif op == 'cross':
                if cross_attention_output is not None:
                    cross_attention_output = torch.cat([cross_attention_output, cond], dim=1)
                else:
                    cross_attention_output = cond
            else:
                raise ValueError(f"unknown op ({op})")

        if self.cross_attention_pos_emb and cross_attention_output is not None:
            positions = torch.arange(
                cross_attention_output.shape[1],
                device=cross_attention_output.device
            ).view(1, -1, 1)
            pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1])
            cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb

        if self._is_streaming:
            self._streaming_state['offsets'] = offsets + T

        return input, cross_attention_output