Spaces:
Sleeping
Sleeping
File size: 24,338 Bytes
4596a70 0227006 d35aee2 4596a70 9346f1c 4596a70 adb0416 0227006 460d762 8c49cb6 6e56e0d f2bc0a5 6e56e0d 8c49cb6 e295ac3 6e56e0d 8c49cb6 d350941 9346f1c d16cee2 460d762 1f60a20 d16cee2 d52179b d16cee2 2a73469 8c49cb6 2a73469 10f9b3c 8c49cb6 10f9b3c 72a0f0f 3777786 f742519 8c49cb6 d52179b f742519 460d762 12cea14 9346f1c 460d762 9346f1c 8c49cb6 9346f1c adb0416 a885f09 adb0416 e295ac3 adb0416 2a73469 72a0f0f f2bc0a5 551debe ffefe11 adb0416 614ee1f 1f60a20 8c49cb6 85dbbc4 12cea14 85dbbc4 12cea14 217b585 85dbbc4 12cea14 8696209 b93d1b1 6e56e0d 3777786 b93d1b1 ef627e9 72a0f0f b2c063a 614ee1f 12cea14 f3cda22 460d762 2f6ebf5 72a0f0f adb0416 6e56e0d adb0416 6e56e0d adb0416 6e56e0d adb0416 6e56e0d adb0416 b93d1b1 8c49cb6 b93d1b1 614ee1f 1f60a20 85dbbc4 12cea14 85dbbc4 8696209 217b585 adb0416 614ee1f 1f60a20 614ee1f b93d1b1 d52179b 1f60a20 12cea14 614ee1f f742519 49a4ed6 8c49cb6 1363c8a 1f60a20 614ee1f b93d1b1 1f60a20 d16cee2 1f60a20 d16cee2 1f60a20 a885f09 b93d1b1 d16cee2 8c49cb6 1f60a20 614ee1f 8c49cb6 72a0f0f e3a8804 ef5b51c 512b095 a2790cb 72a0f0f 512b095 aa7c3f4 adb0416 8c49cb6 ecef2dc 7644705 72a0f0f 3ae1b8c 5491f2d 6e56e0d 3ae1b8c d2179b0 72a0f0f ef5b51c adb0416 ef5b51c adb0416 8c49cb6 e3a8804 8c49cb6 a2790cb 8c49cb6 adb0416 8c49cb6 3ae1b8c 042ea78 20d8830 3ae1b8c dc0413f 3ae1b8c dc0413f d2179b0 8c49cb6 d2179b0 7644705 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 613696b ecef2dc 8c49cb6 e3a8804 72a0f0f e3a8804 8c49cb6 851f91e 8c49cb6 601f2e9 d2179b0 3ae1b8c 8c49cb6 d2179b0 8c49cb6 38b604c d2179b0 3ae1b8c 38b604c 3ae1b8c 8c49cb6 d2179b0 e3a8804 3ae1b8c 5491f2d 3ae1b8c d2179b0 8c49cb6 d2179b0 8c49cb6 6e8f400 8c49cb6 6e8f400 ecef2dc 6e8f400 460d762 6e8f400 a2790cb 8c49cb6 a2790cb e3a8804 a2790cb 8c49cb6 a2790cb e3a8804 a2790cb 6e8f400 a2790cb 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 e3a8804 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 e3a8804 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 a2790cb 8c49cb6 e3a8804 8c49cb6 a2790cb 8c49cb6 a2790cb 6e8f400 f2bc0a5 613696b 6e8f400 0227006 613696b 8dfa543 0227006 8dfa543 6e8f400 8dfa543 8c49cb6 8dfa543 8c49cb6 8dfa543 8c49cb6 8dfa543 00358b1 0227006 6e8f400 8c49cb6 b323764 8c49cb6 95f85ed 8c49cb6 b323764 ef627e9 b323764 0227006 6e8f400 12cea14 72a0f0f 8c49cb6 12cea14 217b585 12cea14 8c49cb6 12cea14 6e8f400 8c49cb6 8cb7546 6e8f400 12cea14 6e8f400 12cea14 8c49cb6 6e8f400 8cb7546 d16cee2 67109fc d16cee2 adb0416 d16cee2 8cb7546 10f9b3c a2790cb 10f9b3c 8c49cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import json
import os
from datetime import datetime, timezone
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi, snapshot_download
from src.assets.css_html_js import custom_css, get_window_url_params
from src.assets.text_content import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.plots.plot_results import (
create_metric_plot_obj,
create_scores_df,
create_plot_df,
join_model_info_with_results,
HUMAN_BASELINES,
)
from src.get_model_info.apply_metadata_to_df import DO_NOT_SUBMIT_MODELS, ModelType
from src.get_model_info.get_metadata_from_hub import get_model_size
from src.filters import check_model_card
from src.get_model_info.utils import (
AutoEvalColumn,
EvalQueueColumn,
fields,
styled_error,
styled_message,
styled_warning,
)
from src.manage_collections import update_collections
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df
from src.filters import is_model_on_hub, user_submission_permission
pd.set_option("display.precision", 1)
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
QUEUE_REPO = "open-llm-leaderboard/requests"
RESULTS_REPO = "open-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
EVAL_REQUESTS_PATH = "eval-queue"
EVAL_RESULTS_PATH = "eval-results"
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
api = HfApi(token=H4_TOKEN)
def restart_space():
api.restart_space(repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN)
# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
if not IS_PUBLIC:
COLS.insert(2, AutoEvalColumn.precision.name)
TYPES.insert(2, AutoEvalColumn.precision.type)
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [
c.name
for c in [
AutoEvalColumn.arc,
AutoEvalColumn.hellaswag,
AutoEvalColumn.mmlu,
AutoEvalColumn.truthfulqa,
]
]
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None)
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None)
requested_models, users_to_submission_dates = get_all_requested_models(EVAL_REQUESTS_PATH)
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
update_collections(original_df.copy())
leaderboard_df = original_df.copy()
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
plot_df = create_plot_df(create_scores_df(join_model_info_with_results(original_df)))
to_be_dumped = f"models = {repr(models)}\n"
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
## INTERACTION FUNCTIONS
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Is the user rate limited?
user_can_submit, error_msg = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA)
if not user_can_submit:
return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Does the model actually exist?
if revision == "":
revision = "main"
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error = is_model_on_hub(base_model, revision, H4_TOKEN)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error = is_model_on_hub(model, revision)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
try:
model_info = api.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info , precision= precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in requested_models:
return styled_warning("This model has been already submitted.")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
# Basics
def change_tab(query_param: str):
query_param = query_param.replace("'", '"')
query_param = json.loads(query_param)
if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation":
return gr.Tabs.update(selected=1)
else:
return gr.Tabs.update(selected=0)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
]
return filtered_df
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
def filter_queries(query: str, filtered_df: pd.DataFrame):
"""Added by Abishek"""
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c
for c in COLS
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.still_on_hub.name,
]
],
value=[
c
for c in COLS_LITE
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.still_on_hub.name,
]
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=True, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320):
with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[
ModelType.PT.to_str(),
ModelType.FT.to_str(),
ModelType.IFT.to_str(),
ModelType.RL.to_str(),
ModelType.Unknown.to_str(),
],
value=[
ModelType.PT.to_str(),
ModelType.FT.to_str(),
ModelType.IFT.to_str(),
ModelType.RL.to_str(),
ModelType.Unknown.to_str(),
],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name]
],
headers=[
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name],
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
max_rows=None,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
)
shown_columns.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_type.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_precision.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_size.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
deleted_models_visibility.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π Metrics evolution through time", elem_id="llm-benchmark-tab-table", id=4):
with gr.Row():
with gr.Column():
chart = create_metric_plot_obj(
plot_df,
["Average β¬οΈ"],
HUMAN_BASELINES,
title="Average of Top Scores and Human Baseline Over Time",
)
gr.Plot(value=chart, interactive=False, width=500, height=500)
with gr.Column():
chart = create_metric_plot_obj(
plot_df,
["ARC", "HellaSwag", "MMLU", "TruthfulQA"],
HUMAN_BASELINES,
title="Top Scores and Human Baseline Over Time",
)
gr.Plot(value=chart, interactive=False, width=500, height=500)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[
ModelType.PT.to_str(" : "),
ModelType.FT.to_str(" : "),
ModelType.IFT.to_str(" : "),
ModelType.RL.to_str(" : "),
],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ"],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=["Original", "Delta", "Adapter"],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
dummy = gr.Textbox(visible=False)
demo.load(
change_tab,
dummy,
tabs,
_js=get_window_url_params,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(concurrency_count=40).launch()
|