File size: 1,367 Bytes
e0b1654
8a82feb
 
927cd84
 
ae14095
0e20c0a
7c52e38
0e20c0a
 
 
 
 
 
 
 
 
 
 
 
3ca4172
0e20c0a
 
ae14095
0e20c0a
eeb12be
0e20c0a
636d4f9
0e20c0a
 
 
 
 
 
 
 
 
 
 
 
 
636d4f9
 
3ca4172
 
 
 
ae8be33
0e20c0a
 
c023b45
1610629
ae14095
 
636d4f9
37f80bf
e0b1654
a9e687d
 
 
1d6a3fa
a9e687d
1d6a3fa
6e8dace
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
from image_dataset import ImageDataset
from image_wgan import ImageWgan
import os
from os.path import exists
from PIL import Image
def init():
    generated_samples_folder = "."
    discriminator_saved_model = "discriminator64.model"
    generator_saved_model = "generator64.model"
    latent_space = 100
    image_wgan = ImageWgan(
        image_shape = (4,64,64),
        latent_space_dimension=latent_space,
        generator_saved_model=generator_saved_model if exists(generator_saved_model) else None,
        discriminator_saved_model=discriminator_saved_model if exists(discriminator_saved_model) else None
    )
    image_wgan.generate(
        sample_folder=generated_samples_folder
    )
    crop()

def crop():

    import generator
    res = 64
    if res != 0:
        results = "generated.png"
        img = Image.open(results)

        width,height = img.size


        top = 2
        bottom = 2
        for i in range(4):
            left = (res+2)*i +2
            right = width-(res+2)*i
            imgcrop = img.crop((left,top,left+res,res+2))


            imgcrop.save(str(i)+".png")     
           
init()






def gen():
    init()
    crop()
    img = Image.open("0.png")

    return img

iface = gr.Interface(
    fn=gen, 
    inputs=None, 
    outputs="image",
    theme="darkhuggingface"
)
iface.launch(debug = True)