File size: 7,264 Bytes
0dcccdd
 
92cb9c8
0dcccdd
 
f56d744
 
0dcccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9518dda
0dcccdd
 
c8f9934
f56d744
 
 
 
 
0e71afa
f56d744
 
0e71afa
 
 
 
 
 
 
 
 
 
 
 
 
 
f56d744
 
 
0e71afa
f56d744
 
 
 
 
 
 
 
0dcccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9518dda
0dcccdd
 
9518dda
0dcccdd
 
 
 
 
 
 
 
 
f56d744
0dcccdd
 
 
c8f9934
 
 
0dcccdd
f56d744
0dcccdd
 
 
 
 
 
 
 
 
 
f56d744
0dcccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9518dda
 
 
 
 
 
 
 
 
 
 
 
0dcccdd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import os
import runpod
import numpy as np
import torch
import requests
import uuid
from diffusers import (AutoencoderKL, CogVideoXDDIMScheduler, DDIMScheduler,
                       DPMSolverMultistepScheduler,
                       EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
                       PNDMScheduler)
from transformers import T5EncoderModel, T5Tokenizer
from omegaconf import OmegaConf
from PIL import Image
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX
from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline
from cogvideox.pipeline.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid, ASPECT_RATIO_512, get_closest_ratio, to_pil
from huggingface_hub import HfApi, HfFolder

tokenxf = os.getenv("HF_API_TOKEN")
# Low GPU memory mode
low_gpu_memory_mode = False
lora_path = "/content/shirtlift.safetensors"
def download_image(url, download_dir="asset"):
    # Ensure the download directory exists
    if not os.path.exists(download_dir):
        os.makedirs(download_dir, exist_ok=True)
    
    # Send the request and check for successful response
    response = requests.get(url, stream=True)
    if response.status_code == 200:
        # Determine file extension based on content type
        content_type = response.headers.get("Content-Type")
        if content_type == "image/png":
            ext = "png"
        elif content_type == "image/jpeg":
            ext = "jpg"
        else:
            ext = "jpg"  # default to .jpg if content type is unrecognized
        
        # Generate a random filename with the correct extension
        filename = f"{uuid.uuid4().hex}.{ext}"
        file_path = os.path.join(download_dir, filename)
        
        # Save the image
        with open(file_path, "wb") as f:
            for chunk in response.iter_content(1024):
                f.write(chunk)
        
        print(f"Image downloaded to {file_path}")
        return file_path
    else:
        raise Exception(f"Failed to download image from {url}, status code: {response.status_code}")

# Usage
# validation_image_start = values.get("validation_image_start", "https://example.com/path/to/image.png")
# downloaded_image_path = download_image(validation_image_start)
model_id = "/content/model"
transformer = CogVideoXTransformer3DModel.from_pretrained_2d(
    model_id, subfolder="transformer", torch_dtype=torch.bfloat16
).to(torch.bfloat16)

vae = AutoencoderKLCogVideoX.from_pretrained(
    model_id, subfolder="vae"
).to(torch.bfloat16)

text_encoder = T5EncoderModel.from_pretrained(
    model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
)

sampler_dict = {
    "Euler": EulerDiscreteScheduler,
    "Euler A": EulerAncestralDiscreteScheduler,
    "DPM++": DPMSolverMultistepScheduler,
    "PNDM": PNDMScheduler,
    "DDIM_Cog": CogVideoXDDIMScheduler,
    "DDIM_Origin": DDIMScheduler,
}
scheduler = sampler_dict["DPM++"].from_pretrained(model_id, subfolder="scheduler")

# Pipeline setup
if transformer.config.in_channels != vae.config.latent_channels:
    pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
        model_id, vae=vae, text_encoder=text_encoder,
        transformer=transformer, scheduler=scheduler,
        torch_dtype=torch.bfloat16
    )
else:
    pipeline = CogVideoX_Fun_Pipeline.from_pretrained(
        model_id, vae=vae, text_encoder=text_encoder,
        transformer=transformer, scheduler=scheduler,
        torch_dtype=torch.bfloat16
    )

if low_gpu_memory_mode:
    pipeline.enable_sequential_cpu_offload()
else:
    pipeline.enable_model_cpu_offload()

@torch.inference_mode()
def generate(input):
    values = input["input"]
    prompt = values["prompt"]
    negative_prompt = values.get("negative_prompt", "blurry, blurred, blurry face")
    guidance_scale = values.get("guidance_scale", 6.0)
    seed = values.get("seed", 42)
    num_inference_steps = values.get("num_inference_steps", 18)
    base_resolution = values.get("base_resolution", 512)
    
    video_length = values.get("video_length", 53)
    fps = values.get("fps", 10)
    lora_weight = values.get("lora_weight", 1.00)
    save_path = "samples"
    partial_video_length = values.get("partial_video_length", None)
    overlap_video_length = values.get("overlap_video_length", 4)
    validation_image_start = values.get("validation_image_start", "asset/1.png")
    downloaded_image_path = download_image(validation_image_start)
    validation_image_end = values.get("validation_image_end", None)
    
    generator = torch.Generator(device="cuda").manual_seed(seed)
    if lora_path is not None:
        pipeline = merge_lora(pipeline, lora_path, lora_weight)
    
    aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
    start_img = Image.open(downloaded_image_path)
    original_width, original_height = start_img.size
    closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
    height, width = [int(x / 16) * 16 for x in closest_size]
    sample_size = [height, width]
    if partial_video_length is not None:
        # Handle ultra-long video generation if required
        # ... (existing logic for partial video generation)
    else:
        # Standard video generation
        video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
        input_video, input_video_mask, clip_image = get_image_to_video_latent(downloaded_image_path, validation_image_end, video_length=video_length, sample_size=sample_size)
        
        with torch.no_grad():
            sample = pipeline(
                prompt=prompt,
                num_frames=video_length,
                negative_prompt=negative_prompt,
                height=sample_size[0],
                width=sample_size[1],
                generator=generator,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                video=input_video,
                mask_video=input_video_mask
            ).videos
    
    if not os.path.exists(save_path):
        os.makedirs(save_path, exist_ok=True)

    index = len([path for path in os.listdir(save_path)]) + 1
    prefix = str(index).zfill(8)
    video_path = os.path.join(save_path, f"{prefix}.mp4")
    save_videos_grid(sample, video_path, fps=fps)


    hf_api = HfApi()
    repo_id = "meepmoo/h4h4jejdf"  # Set your HF repo
    hf_api.upload_file(
       path_or_fileobj=video_path,
       path_in_repo=f"{prefix}.mp4",
       repo_id=repo_id,
       token=tokenxf,
       repo_type="model"
    )

    Prepare output
    result_url = f"https://huggingface.co/{repo_id}/blob/main/{prefix}.mp4"
    result_url = ""
    job_id = values.get("job_id", "default-job-id")  # For RunPod job tracking
    return {"jobId": job_id, "result": result_url, "status": "DONE"}

runpod.serverless.start({"handler": generate})