File size: 7,264 Bytes
0dcccdd 92cb9c8 0dcccdd f56d744 0dcccdd 9518dda 0dcccdd c8f9934 f56d744 0e71afa f56d744 0e71afa f56d744 0e71afa f56d744 0dcccdd 9518dda 0dcccdd 9518dda 0dcccdd f56d744 0dcccdd c8f9934 0dcccdd f56d744 0dcccdd f56d744 0dcccdd 9518dda 0dcccdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import json
import os
import runpod
import numpy as np
import torch
import requests
import uuid
from diffusers import (AutoencoderKL, CogVideoXDDIMScheduler, DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from transformers import T5EncoderModel, T5Tokenizer
from omegaconf import OmegaConf
from PIL import Image
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX
from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline
from cogvideox.pipeline.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid, ASPECT_RATIO_512, get_closest_ratio, to_pil
from huggingface_hub import HfApi, HfFolder
tokenxf = os.getenv("HF_API_TOKEN")
# Low GPU memory mode
low_gpu_memory_mode = False
lora_path = "/content/shirtlift.safetensors"
def download_image(url, download_dir="asset"):
# Ensure the download directory exists
if not os.path.exists(download_dir):
os.makedirs(download_dir, exist_ok=True)
# Send the request and check for successful response
response = requests.get(url, stream=True)
if response.status_code == 200:
# Determine file extension based on content type
content_type = response.headers.get("Content-Type")
if content_type == "image/png":
ext = "png"
elif content_type == "image/jpeg":
ext = "jpg"
else:
ext = "jpg" # default to .jpg if content type is unrecognized
# Generate a random filename with the correct extension
filename = f"{uuid.uuid4().hex}.{ext}"
file_path = os.path.join(download_dir, filename)
# Save the image
with open(file_path, "wb") as f:
for chunk in response.iter_content(1024):
f.write(chunk)
print(f"Image downloaded to {file_path}")
return file_path
else:
raise Exception(f"Failed to download image from {url}, status code: {response.status_code}")
# Usage
# validation_image_start = values.get("validation_image_start", "https://example.com/path/to/image.png")
# downloaded_image_path = download_image(validation_image_start)
model_id = "/content/model"
transformer = CogVideoXTransformer3DModel.from_pretrained_2d(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16
).to(torch.bfloat16)
vae = AutoencoderKLCogVideoX.from_pretrained(
model_id, subfolder="vae"
).to(torch.bfloat16)
text_encoder = T5EncoderModel.from_pretrained(
model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
)
sampler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM_Cog": CogVideoXDDIMScheduler,
"DDIM_Origin": DDIMScheduler,
}
scheduler = sampler_dict["DPM++"].from_pretrained(model_id, subfolder="scheduler")
# Pipeline setup
if transformer.config.in_channels != vae.config.latent_channels:
pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
model_id, vae=vae, text_encoder=text_encoder,
transformer=transformer, scheduler=scheduler,
torch_dtype=torch.bfloat16
)
else:
pipeline = CogVideoX_Fun_Pipeline.from_pretrained(
model_id, vae=vae, text_encoder=text_encoder,
transformer=transformer, scheduler=scheduler,
torch_dtype=torch.bfloat16
)
if low_gpu_memory_mode:
pipeline.enable_sequential_cpu_offload()
else:
pipeline.enable_model_cpu_offload()
@torch.inference_mode()
def generate(input):
values = input["input"]
prompt = values["prompt"]
negative_prompt = values.get("negative_prompt", "blurry, blurred, blurry face")
guidance_scale = values.get("guidance_scale", 6.0)
seed = values.get("seed", 42)
num_inference_steps = values.get("num_inference_steps", 18)
base_resolution = values.get("base_resolution", 512)
video_length = values.get("video_length", 53)
fps = values.get("fps", 10)
lora_weight = values.get("lora_weight", 1.00)
save_path = "samples"
partial_video_length = values.get("partial_video_length", None)
overlap_video_length = values.get("overlap_video_length", 4)
validation_image_start = values.get("validation_image_start", "asset/1.png")
downloaded_image_path = download_image(validation_image_start)
validation_image_end = values.get("validation_image_end", None)
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight)
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
start_img = Image.open(downloaded_image_path)
original_width, original_height = start_img.size
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
height, width = [int(x / 16) * 16 for x in closest_size]
sample_size = [height, width]
if partial_video_length is not None:
# Handle ultra-long video generation if required
# ... (existing logic for partial video generation)
else:
# Standard video generation
video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
input_video, input_video_mask, clip_image = get_image_to_video_latent(downloaded_image_path, validation_image_end, video_length=video_length, sample_size=sample_size)
with torch.no_grad():
sample = pipeline(
prompt=prompt,
num_frames=video_length,
negative_prompt=negative_prompt,
height=sample_size[0],
width=sample_size[1],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
video=input_video,
mask_video=input_video_mask
).videos
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
video_path = os.path.join(save_path, f"{prefix}.mp4")
save_videos_grid(sample, video_path, fps=fps)
hf_api = HfApi()
repo_id = "meepmoo/h4h4jejdf" # Set your HF repo
hf_api.upload_file(
path_or_fileobj=video_path,
path_in_repo=f"{prefix}.mp4",
repo_id=repo_id,
token=tokenxf,
repo_type="model"
)
Prepare output
result_url = f"https://huggingface.co/{repo_id}/blob/main/{prefix}.mp4"
result_url = ""
job_id = values.get("job_id", "default-job-id") # For RunPod job tracking
return {"jobId": job_id, "result": result_url, "status": "DONE"}
runpod.serverless.start({"handler": generate})
|