File size: 3,335 Bytes
08d9799 0dcccdd 08d9799 0dcccdd 08d9799 0dcccdd 08d9799 268fee6 47d9083 08d9799 0dcccdd 268fee6 08d9799 f6fb5e5 08d9799 f6fb5e5 08d9799 86b546c 08d9799 86b546c 08d9799 0dcccdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import os, json, requests, random, runpod
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer
with torch.inference_mode():
model_id = "/content/model"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16).to("cuda")
lora_path = "/content/shirtlift.safetensors"
lora_weight = 1.0
pipe = merge_lora(pipe, lora_path, lora_weight)
# pipe.enable_model_cpu_offload()
def download_file(url, save_dir, file_name):
os.makedirs(save_dir, exist_ok=True)
original_file_name = url.split('/')[-1]
_, original_file_extension = os.path.splitext(original_file_name)
file_path = os.path.join(save_dir, file_name + original_file_extension)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
@torch.inference_mode()
def generate(input):
values = input["input"]
input_image = values['input_image_check']
input_image = download_file(url=input_image, save_dir='/content/input', file_name='input_image_tost')
prompt = values['prompt']
# guidance_scale = values['guidance_scale']
# use_dynamic_cfg = values['use_dynamic_cfg']
# num_inference_steps = values['num_inference_steps']
# fps = values['fps']
guidance_scale = 6
use_dynamic_cfg = True
num_inference_steps = 17
fps = 9
image = load_image(input_image)
video = pipe(image=image, prompt=prompt, guidance_scale=guidance_scale, use_dynamic_cfg=use_dynamic_cfg, num_inference_steps=num_inference_steps).frames[0]
export_to_video(video, "/content/cogvideox_5b_i2v_tost.mp4", fps=fps)
result = "/content/cogvideox_5b_i2v_tost.mp4"
try:
default_filename = os.path.basename(result)
print("Video saved to grid, uploading to huggingface")
hf_api = HfApi()
repo_id = "meepmoo/h4h4jejdf" # Set your HF repo
tokenxf = os.getenv("HF_API_TOKEN")
hf_api.upload_file(path_or_fileobj=result,path_in_repo=f"{default_filename}.mp4",repo_id=repo_id,token=tokenxf,repo_type="model")
result_url = f"https://huggingface.co/{repo_id}/blob/main/{default_filename}.mp4"
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
if os.path.exists(input_image):
os.remove(input_image)
runpod.serverless.start({"handler": generate})
|