|
''' |
|
#AIzaSyDmNtYorO3UXgcRwgKz74JgJvdyh1YfxI4 |
|
from langchain_community.chat_models import ChatHuggingFace |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from langchain.chat_models import ChatOpenAI |
|
#from langchain.agents import Tool, initialize_agent |
|
#from langchain.agents.agent_types import AgentType |
|
from langchain.tools import tool |
|
from langchain.chains.llm_math.base import LLMMathChain |
|
from langchain_community.utilities import WikipediaAPIWrapper |
|
from langchain_community.tools import DuckDuckGoSearchRun |
|
#from langchain.utilities import WikipediaAPIWrapper, |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from youtube_transcript_api import YouTubeTranscriptApi |
|
import pytesseract, cv2, pandas as pd |
|
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.agents import AgentExecutor, initialize_agent |
|
from langchain.agents import AgentType |
|
from langchain.agents import Tool |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.messages import SystemMessage |
|
from langchain.memory import ConversationBufferWindowMemory |
|
import os |
|
|
|
|
|
from huggingface_hub import InferenceClient |
|
from langchain_huggingface import ChatHuggingFace |
|
''' |
|
|
|
|
|
from langchain_community.chat_models import ChatHuggingFace |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.agents import AgentExecutor, initialize_agent |
|
from langchain.agents import AgentType |
|
from langchain.agents import Tool |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.messages import SystemMessage |
|
from langchain.memory import ConversationBufferWindowMemory |
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
RESPONSE_TEMPLATE = """FINAL ANSWER: {answer}""" |
|
|
|
|
|
SYSTEM_PROMPT = """You are a helpful assistant that answers questions using available tools. |
|
Response Requirements: |
|
- is exactly: FINAL ANSWER: {answer} |
|
Formatting Rules: |
|
- Numbers: Plain (42) - no commas/units |
|
- Strings: Minimal (Paris) - no articles/abbreviations |
|
- Lists: Comma-separated (5, apple, 10) |
|
- No symbols unless specified |
|
- Digits as words when required""" |
|
|
|
|
|
|
|
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
|
|
|
|
llm = HuggingFaceEndpoint( |
|
repo_id="Qwen/Qwen1.5-7B-Chat", |
|
temperature=0.1, |
|
max_new_tokens=256, |
|
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, |
|
) |
|
|
|
|
|
chat_model = ChatHuggingFace(llm=llm) |
|
|
|
|
|
''' |
|
client = InferenceClient( |
|
model="Qwen/Qwen1.5-7B-Chat", |
|
token=os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
) |
|
|
|
llm = ChatHuggingFace(llm=client) |
|
''' |
|
''' |
|
llm = ChatHuggingFace( |
|
repo_id="Qwen/Qwen1.5-7B-Chat", |
|
temperature=0.1, |
|
max_new_tokens=256, |
|
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"), |
|
) |
|
|
|
''' |
|
|
|
prompt = ChatPromptTemplate.from_messages([ |
|
SystemMessage(content=SYSTEM_PROMPT), |
|
("human", "{input}"), |
|
("ai", "{agent_scratchpad}") |
|
]) |
|
|
|
|
|
|
|
@tool |
|
def wikipedia_search(query: str) -> str: |
|
"""Search Wikipedia and return summary.""" |
|
return WikipediaAPIWrapper().run(query) |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search the web using DuckDuckGo.""" |
|
return DuckDuckGoSearchRun().run(query) |
|
|
|
@tool |
|
def youtube_transcript(url: str) -> str: |
|
"""Extract transcript from a YouTube video URL.""" |
|
video_id = url.split("v=")[-1] |
|
transcript = YouTubeTranscriptApi.get_transcript(video_id) |
|
return "\n".join([x["text"] for x in transcript]) |
|
|
|
@tool |
|
def image_ocr(path: str) -> str: |
|
"""Extract text from an image file.""" |
|
img = cv2.imread(path) |
|
return pytesseract.image_to_string(img) |
|
|
|
@tool |
|
def read_excel(path: str) -> str: |
|
"""Read contents of an Excel (.xlsx) file.""" |
|
df = pd.read_excel(path) |
|
return df.to_string() |
|
|
|
@tool |
|
def reverse_text(text: str) -> str: |
|
"""Reverse the text if it looks reversed.""" |
|
reversed_candidate = text[::-1] |
|
if " " in reversed_candidate: |
|
return f"Reversed detected. Corrected: {reversed_candidate}" |
|
return text |
|
|
|
@tool |
|
def vector_search(query: str) -> str: |
|
"""Search in example documents using vector similarity.""" |
|
docs = [ |
|
"Machine learning involves training algorithms on data.", |
|
"Neural networks are a part of deep learning.", |
|
"Supervised learning uses labeled datasets." |
|
] |
|
embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
vectordb = Chroma.from_texts(docs, embedding=embed) |
|
results = vectordb.similarity_search(query, k=2) |
|
return "\n".join([r.page_content for r in results]) |
|
''' |
|
@tool |
|
def math_calc(expression: str) -> str: |
|
"""Solve a math expression using LLM.""" |
|
return LLMMathChain(llm=llm).run(expression) |
|
''' |
|
@tool |
|
def math_calc(expression: str) -> str: |
|
"""Evaluate a math expression.""" |
|
return str(eval(expression, {"__builtins__": {}})) |
|
|
|
@tool |
|
def python_eval(code: str) -> str: |
|
"""Evaluate basic Python code.""" |
|
try: |
|
return str(eval(code, {"__builtins__": {}})) |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
tools = [ |
|
wikipedia_search, |
|
web_search, |
|
youtube_transcript, |
|
image_ocr, |
|
read_excel, |
|
reverse_text, |
|
vector_search, |
|
math_calc, |
|
python_eval |
|
] |
|
|
|
|
|
agent = initialize_agent( |
|
tools=tools, |
|
llm=llm, |
|
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, |
|
verbose=True, |
|
memory=ConversationBufferWindowMemory( |
|
memory_key="chat_history", |
|
k=3, |
|
return_messages=True |
|
), |
|
agent_kwargs={ |
|
"system_message": SystemMessage(content=SYSTEM_PROMPT), |
|
"prompt": prompt |
|
}, |
|
handle_parsing_errors=True |
|
) |
|
|
|
def get_agent_response(question_text): |
|
|
|
response = agent.invoke({"input": question_text}) |
|
submitted_answer = response["output"] |
|
|
|
|
|
if not submitted_answer.strip().startswith("FINAL ANSWER:"): |
|
last_line = submitted_answer.split('\n')[-1] |
|
submitted_answer = f"FINAL ANSWER: {last_line.strip()}" |
|
|
|
return submitted_answer |
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent.run(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |