|
import json |
|
import os |
|
import requests |
|
import pandas as pd |
|
from groq import Groq |
|
|
|
import pandas as pd |
|
import pytube |
|
from io import BytesIO |
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
client = Groq(api_key=os.getenv("GROQ_API_KEY")) |
|
|
|
class MyAgent: |
|
def __init__(self): |
|
self.client = Groq() |
|
self.model = "llama3-70b-8192" |
|
self.conversation_history = [] |
|
self._add_system_prompt() |
|
self.wiki_wiki = wikipediaapi.Wikipedia('en') |
|
|
|
def _add_system_prompt(self): |
|
self.conversation_history.append({ |
|
"role": "system", |
|
"content": ( |
|
"You are a helpful assistant with access to multiple tools.\n" |
|
"When using tools, respond with JSON containing 'tool_call_id'.\n" |
|
"Available tools:\n" |
|
|
|
"- read_excel: Extract data from Excel files (provide URL)\n" |
|
"- youtube_info: Get information from YouTube videos\n" |
|
"- web_search: General web search\n" |
|
"- calculator: Math calculations\n" |
|
"Format answers as:\n" |
|
"- Single number (e.g., 42)\n" |
|
"- Single lowercase phrase (e.g., 'los angeles')\n" |
|
"- Comma-separated list (e.g., 'apple,banana,orange')\n" |
|
"Never include units, commas in numbers, or prefixes like 'Answer:'." |
|
) |
|
}) |
|
|
|
def _get_tools(self): |
|
return [ |
|
|
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "read_excel", |
|
"description": "Read data from an Excel file available at a URL", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"url": {"type": "string", "description": "URL of the Excel file to read"}, |
|
"sheet_name": {"type": "string", "description": "Name of the sheet to read (optional)"}, |
|
"n_rows": {"type": "integer", "description": "Number of rows to return (optional)"} |
|
}, |
|
"required": ["url"] |
|
} |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "youtube_info", |
|
"description": "Get information from a YouTube video", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"url": {"type": "string", "description": "YouTube video URL"}, |
|
"info_type": { |
|
"type": "string", |
|
"enum": ["metadata", "transcript"], |
|
"description": "Type of information to extract: metadata or transcript" |
|
} |
|
}, |
|
"required": ["url"] |
|
} |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "web_search", |
|
"description": "Search the web for current information", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"query": {"type": "string"} |
|
}, |
|
"required": ["query"] |
|
} |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "calculator", |
|
"description": "Evaluate math expressions", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"expression": {"type": "string"} |
|
}, |
|
"required": ["expression"] |
|
} |
|
} |
|
} |
|
] |
|
|
|
def _execute_tool(self, tool_name, args): |
|
try: |
|
if tool_name == "wikipedia_search": |
|
return self._wikipedia_search(**args) |
|
elif tool_name == "read_excel": |
|
return self._read_excel(**args) |
|
elif tool_name == "youtube_info": |
|
return self._youtube_info(**args) |
|
elif tool_name == "web_search": |
|
return f"Web result for: {args.get('query')}" |
|
elif tool_name == "calculator": |
|
try: |
|
return str(eval(args.get("expression"))) |
|
except Exception as e: |
|
return f"Calculation error: {e}" |
|
return f"Unknown tool: {tool_name}" |
|
except Exception as e: |
|
return f"Tool execution error: {str(e)}" |
|
|
|
def _wikipedia_search(self, query): |
|
page = self.wiki_wiki.page(query) |
|
if page.exists(): |
|
summary = page.summary[:1000] |
|
return f"Wikipedia result for '{query}': {summary}" |
|
return f"No Wikipedia page found for '{query}'" |
|
|
|
def _read_excel(self, url, sheet_name=None, n_rows=None): |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
|
|
excel_data = BytesIO(response.content) |
|
if sheet_name: |
|
df = pd.read_excel(excel_data, sheet_name=sheet_name) |
|
else: |
|
df = pd.read_excel(excel_data) |
|
|
|
if n_rows: |
|
df = df.head(n_rows) |
|
|
|
|
|
return df.to_dict(orient='records') |
|
|
|
def _youtube_info(self, url, info_type="metadata"): |
|
yt = pytube.YouTube(url) |
|
|
|
if info_type == "metadata": |
|
return { |
|
"title": yt.title, |
|
"author": yt.author, |
|
"length": yt.length, |
|
"views": yt.views, |
|
"publish_date": str(yt.publish_date) |
|
} |
|
elif info_type == "transcript": |
|
try: |
|
caption = yt.captions.get_by_language_code('en') |
|
return caption.generate_srt_captions() |
|
except: |
|
return "No English transcript available" |
|
return "Invalid info_type specified" |
|
''' |
|
import json |
|
import os |
|
import requests |
|
import pandas as pd |
|
from groq import Groq |
|
import gradio as gr |
|
# (Keep Constants as is) |
|
# --- Constants --- |
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
client = Groq(api_key=os.getenv("GROQ_API_KEY")) |
|
class MyAgent: |
|
def __init__(self): |
|
self.client = Groq() |
|
self.model = "llama3-70b-8192" |
|
self.conversation_history = [] |
|
self._add_system_prompt() |
|
|
|
def _add_system_prompt(self): |
|
self.conversation_history.append({ |
|
"role": "system", |
|
"content": ( |
|
"You are a helpful assistant that can use tools when needed.\n" |
|
"When using tools, respond with JSON containing 'tool_call_id'.\n" |
|
"Format answers as:\n" |
|
"- Single number (e.g., 42)\n" |
|
"- Single lowercase phrase (e.g., 'los angeles')\n" |
|
"- Comma-separated list (e.g., 'apple,banana,orange')\n" |
|
"Never include units, commas in numbers, or prefixes like 'Answer:'." |
|
) |
|
}) |
|
|
|
def _get_tools(self): |
|
return [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "web_search", |
|
"description": "Search the web for current information", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"query": {"type": "string"} |
|
}, |
|
"required": ["query"] |
|
} |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "calculator", |
|
"description": "Evaluate math expressions", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"expression": {"type": "string"} |
|
}, |
|
"required": ["expression"] |
|
} |
|
} |
|
} |
|
] |
|
|
|
def _execute_tool(self, tool_name, args): |
|
if tool_name == "web_search": |
|
return f"Web result for: {args.get('query')}" |
|
elif tool_name == "calculator": |
|
try: |
|
return str(eval(args.get("expression"))) |
|
except Exception as e: |
|
return f"Calculation error: {e}" |
|
return f"Unknown tool: {tool_name}" |
|
|
|
def add_message(self, role, content): |
|
if role == "tool": |
|
if not isinstance(content, dict) or "tool_call_id" not in content: |
|
raise ValueError("Tool messages require tool_call_id") |
|
self.conversation_history.append({ |
|
"role": "tool", |
|
"content": content.get("content", ""), |
|
"tool_call_id": content["tool_call_id"], |
|
"name": content.get("name", "") |
|
}) |
|
else: |
|
self.conversation_history.append({"role": role, "content": content}) |
|
|
|
def get_response(self, user_message: str) -> str: |
|
self.add_message("user", user_message) |
|
|
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model, |
|
messages=self.conversation_history, |
|
tools=self._get_tools() |
|
) |
|
|
|
message = response.choices[0].message |
|
|
|
# Handle tool calls |
|
if hasattr(message, 'tool_calls') and message.tool_calls: |
|
tool_call = message.tool_calls[0] # Take first tool call |
|
tool_name = tool_call.function.name |
|
args = json.loads(tool_call.function.arguments) |
|
|
|
# Execute tool and add response with tool_call_id |
|
result = self._execute_tool(tool_name, args) |
|
self.add_message("tool", { |
|
"tool_call_id": tool_call.id, |
|
"name": tool_name, |
|
"content": result |
|
}) |
|
return result |
|
|
|
# Handle normal response |
|
assistant_reply = message.content.strip() |
|
self.add_message("assistant", assistant_reply) |
|
return assistant_reply |
|
|
|
except Exception as e: |
|
error_msg = f"Error: {str(e)}" |
|
self.add_message("system", error_msg) |
|
return error_msg |
|
''' |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
|
|
|
|
|
|
agent = MyAgent() |
|
|
|
|
|
|
|
|
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent.get_response(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |