|
|
|
from typing import TypedDict, Annotated, Sequence, Any, Dict, Optional |
|
import operator |
|
import json |
|
import requests |
|
from io import BytesIO |
|
import pandas as pd |
|
from duckduckgo_search import DDGS |
|
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper |
|
from langchain_community.document_loaders import YoutubeLoader |
|
from langchain_core.tools import tool |
|
from langchain_core.messages import HumanMessage, SystemMessage |
|
from langchain_groq import ChatGroq |
|
from langgraph.graph import END, StateGraph |
|
import os |
|
from groq import Groq |
|
import gradio as gr |
|
|
|
import requests |
|
import json |
|
|
|
|
|
OR_API_KEY = os.getenv("DS") |
|
HEADERS = { |
|
"Authorization": f"Bearer {OR_API_KEY}", |
|
"Content-Type": "application/json", |
|
"HTTP-Referer": "<YOUR_SITE_URL>", |
|
"X-Title": "<YOUR_SITE_NAME>", |
|
} |
|
|
|
|
|
''' |
|
# Example usage: |
|
prompt1 = "Hello, what is the cultural capital of morocco?" |
|
print(get_concise_answer(prompt1)) |
|
|
|
prompt2 = "how many albums does maher zain have?" |
|
print(get_concise_answer(prompt2)) |
|
''' |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
client = Groq(api_key=os.getenv("GROQ_API_KEY")) |
|
|
|
|
|
|
|
@tool |
|
def reverse_text(text: str) -> str: |
|
"""Reverses the input text. Example: 'siht' becomes 'this'.""" |
|
return text[::-1] |
|
reverse_text.name = "reverse_text" |
|
@tool |
|
def execute_python(code: str) -> str: |
|
"""Safely execute Python code and return the result or error.""" |
|
try: |
|
|
|
local_env = {} |
|
exec(code, {"__builtins__": {}}, local_env) |
|
return str(local_env) |
|
except Exception as e: |
|
return f"Execution error: {e}" |
|
|
|
execute_python.name = "execute_python" |
|
|
|
@tool |
|
def duckduckgo_search(query: str) -> str: |
|
"""Search the web using DuckDuckGo and return the top result.""" |
|
try: |
|
with DDGS() as ddgs: |
|
results = list(ddgs.text(query, max_results=1)) |
|
if results: |
|
return f"{results[0]['title']}\n{results[0]['href']}\n{results[0]['body']}" |
|
else: |
|
return "No results found." |
|
except Exception as e: |
|
return f"Search failed: {e}" |
|
|
|
duckduckgo_search.name = "duckduckgo_search" |
|
|
|
@tool |
|
def wikipedia_search(query: str) -> str: |
|
"""Search Wikipedia for information about a topic.""" |
|
try: |
|
wikipedia = WikipediaAPIWrapper() |
|
return wikipedia.run(query) |
|
except Exception as e: |
|
return f"Wikipedia error: {e}" |
|
|
|
wikipedia_search.name = "wikipedia_search" |
|
|
|
@tool |
|
def read_excel(url: str, sheet_name: str = None, n_rows: int = None) -> str: |
|
"""Read data from an Excel file available at a URL.""" |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
excel_data = BytesIO(response.content) |
|
df = pd.read_excel(excel_data, sheet_name=sheet_name) if sheet_name else pd.read_excel(excel_data) |
|
return df.head(n_rows).to_string() if n_rows else df.to_string() |
|
except Exception as e: |
|
return f"Failed to read Excel file: {e}" |
|
|
|
read_excel.name = "read_excel" |
|
|
|
@tool |
|
def youtube_info(url: str, info_type: str = "metadata") -> str: |
|
"""Get information from a YouTube video (metadata or transcript).""" |
|
try: |
|
if info_type == "metadata": |
|
loader = YoutubeLoader.from_youtube_url(url, add_video_info=True) |
|
return str(loader.load()[0].metadata) |
|
elif info_type == "transcript": |
|
loader = YoutubeLoader.from_youtube_url(url) |
|
return loader.load()[0].page_content |
|
return "Invalid info_type specified" |
|
except Exception as e: |
|
return f"Error loading YouTube content: {e}" |
|
|
|
youtube_info.name = "youtube_info" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools = [duckduckgo_search, wikipedia_search, read_excel, youtube_info, execute_python, reverse_text] |
|
|
|
def get_concise_answer_by_groq( |
|
prompt: str, |
|
model: str = "llama3-70b-8192", |
|
timeout: int = 1000, |
|
) -> Optional[str]: |
|
""" |
|
Fetches a concise AI response from Groq API. |
|
|
|
Args: |
|
prompt (str): The user's input/question. |
|
model (str): The AI model to use (default: mixtral-8x7b-32768). |
|
timeout (int): Request timeout in seconds (default: 10). |
|
|
|
Returns: |
|
str: The concise AI response, or None if an error occurs. |
|
""" |
|
sys_message = """You are an AI assistant that answers questions directly and concisely. |
|
-Respond with only the factual answer, no prefixes, explanations, or extra text like " or ' or point .... |
|
-Do not write reflection in the response just one or few words in the answer. |
|
-Do not write for example the surname is Agnew but instead write Agnew directy. |
|
-If the user tell you to give the first name, just give it without the last name |
|
-Do not write I searched wikipedia ... but write the answer in one or few words. |
|
-Do not add separators to the answer. |
|
-Answer with complete name of the country. For instance use France instead FRA. |
|
-If you detect inverted text (like 'siht si'), automatically reverse it before answering. |
|
Examples: |
|
-User: What is 'siht'? |
|
-AI: this |
|
-User: Who is the CEO of Tesla? |
|
-AI: Elon Musk |
|
-User: Capital of Japan? |
|
-AI: Tokyo |
|
""" |
|
|
|
try: |
|
chat_completion = client.chat.completions.create( |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": sys_message |
|
}, |
|
{ |
|
"role": "user", |
|
"content": prompt |
|
} |
|
], |
|
model="llama3-70b-8192", |
|
temperature=0, |
|
max_tokens=20 |
|
) |
|
|
|
if chat_completion and chat_completion.choices: |
|
return chat_completion.choices[0].message.content.strip() |
|
else: |
|
return "Could not get a response from the API." |
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
|
|
|
|
def get_concise_answer( |
|
prompt: str, |
|
model: str = "deepseek/deepseek-chat:free", |
|
timeout: int = 1000, |
|
) -> Optional[str]: |
|
""" |
|
Fetches a concise AI response from OpenRouter API. |
|
|
|
Args: |
|
prompt (str): The user's input/question. |
|
model (str): The AI model to use (default: deepseek-chat-v3-0324). |
|
timeout (int): Request timeout in seconds (default: 10). |
|
|
|
Returns: |
|
str: The concise AI response, or None if an error occurs. |
|
""" |
|
sys_message = """You are an AI assistant that answers questions directly and concisely. |
|
-Respond with only the factual answer, no prefixes, explanations, or extra text. |
|
-Do not write reflection in the response just one or few words in the answer. |
|
-Do not write for example the surname is Agnew but instead write Agnew directy. |
|
-Do not write I searched wikipedia ... but write the answer in one or few words. |
|
-Do not add separators to the answer. |
|
-Answer with complete name of the country. For instance use France instead FRA. |
|
-If you detect inverted text (like 'siht si'), automatically reverse it before answering. |
|
-Example: |
|
-User: What is 'siht'? |
|
-AI: this |
|
Examples: |
|
- User: Who is the CEO of Tesla? |
|
- AI: Elon Musk |
|
- User: Capital of Japan? |
|
- AI: Tokyo |
|
""" |
|
|
|
try: |
|
response = requests.post( |
|
url="https://openrouter.ai/api/v1/chat/completions", |
|
headers=HEADERS, |
|
data=json.dumps({ |
|
"model": model, |
|
"messages": [ |
|
{ |
|
"role": "system", |
|
"content": sys_message |
|
}, |
|
{"role": "user", "content": prompt} |
|
], |
|
}), |
|
timeout=timeout, |
|
) |
|
response.raise_for_status() |
|
data = response.json() |
|
|
|
|
|
if "choices" not in data or not data["choices"]: |
|
return None |
|
|
|
model_response = data["choices"][0]["message"]["content"] |
|
return model_response.strip() |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"API Request failed: {e}") |
|
return None |
|
except (KeyError, json.JSONDecodeError) as e: |
|
print(f"Failed to parse API response: {e}") |
|
return None |
|
|
|
from typing import TypedDict, Annotated, Sequence, Dict, Any, Union |
|
from langchain_core.messages import HumanMessage, AIMessage |
|
|
|
|
|
class AgentState(TypedDict): |
|
messages: Annotated[Sequence[Union[HumanMessage, AIMessage]], operator.add] |
|
sender: str |
|
|
|
|
|
def agent_node(state: AgentState): |
|
|
|
messages = state["messages"] |
|
last_message = messages[-1].content if messages else "" |
|
|
|
|
|
model_response = get_concise_answer_by_groq(last_message) |
|
|
|
|
|
return {"messages": [AIMessage(content=model_response or "No response received")]} |
|
|
|
|
|
def tool_node(state: AgentState): |
|
messages = state["messages"] |
|
last_msg = messages[-1] |
|
|
|
|
|
if not hasattr(last_msg, 'tool_calls') or not last_msg.tool_calls: |
|
return {"messages": [AIMessage(content="No tool calls found")]} |
|
|
|
|
|
tool_call = last_msg.tool_calls[0] |
|
tool_name = tool_call["name"] |
|
tool_input = json.loads(tool_call["args"]) |
|
|
|
|
|
selected_tool = next(t for t in tools if t.name == tool_name) |
|
output = selected_tool.invoke(tool_input) |
|
|
|
|
|
return {"messages": [HumanMessage(content=output, name=tool_name)]} |
|
|
|
|
|
workflow = StateGraph(AgentState) |
|
workflow.add_node("agent", agent_node) |
|
workflow.add_node("tools", tool_node) |
|
|
|
workflow.add_conditional_edges( |
|
"agent", |
|
lambda x: hasattr(x["messages"][-1], 'tool_calls') and x["messages"][-1].tool_calls, |
|
{True: "tools", False: END} |
|
) |
|
workflow.add_edge("tools", "agent") |
|
|
|
|
|
workflow.set_entry_point("agent") |
|
|
|
|
|
agent = workflow.compile() |
|
''' |
|
# 6. Run Function (Example usage) |
|
if __name__ == "__main__": |
|
# Example of using the agent |
|
# Example invocation |
|
response = agent.invoke({ |
|
"messages": [HumanMessage(content="Who is the CEO of Tesla?")], |
|
"sender": "user" |
|
}) |
|
print(response["messages"][-1].content) # Should print "Elon Musk" |
|
|
|
''' |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
''' |
|
# 1. Instantiate Agent ( modify this part to create your agent) |
|
try: |
|
|
|
# Create agent |
|
#agent = CodeAgent(client=client,model="llama-3.3-70b-versatile",system_prompt="You are a helpful AI assistant with access to tools.") |
|
agent = MyAgent() |
|
# Add tools |
|
#tools = [wikipedia_search,web_search,youtube_transcript,math_calc] |
|
#agent.add_langchain_tools(tools) |
|
#agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
''' |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
agent_response = agent.invoke({ |
|
"messages": [HumanMessage(content=question_text)], |
|
"sender": "user" |
|
}) |
|
submitted_answer = agent_response["messages"][-1].content |
|
|
|
|
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|
|
|
|
|