Spaces:
Runtime error
Runtime error
File size: 8,745 Bytes
8f69832 b658b84 8f69832 c92a751 8f69832 b658b84 8f69832 a7ac778 1a24a58 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 1a24a58 8f69832 1a24a58 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 6ef300c c92a751 6ef300c c92a751 6ef300c c92a751 6ef300c c92a751 8f69832 c92a751 8f69832 c92a751 9477f68 c92a751 9477f68 c92a751 9477f68 c92a751 1a24a58 c92a751 1a24a58 9477f68 c92a751 9477f68 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 1a24a58 c92a751 8f69832 c92a751 c853074 a7ac778 c92a751 c853074 c92a751 1a24a58 c853074 1a24a58 c853074 1a24a58 8f69832 c92a751 c853074 c92a751 6ef300c c92a751 9996fa3 c92a751 1a24a58 9849035 d48129a 8f69832 c92a751 1a24a58 c92a751 c853074 c92a751 1a24a58 c92a751 1a24a58 c92a751 a7ac778 1a24a58 c92a751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import time
import math
import random
import csv
from io import BytesIO
import numpy as np
from cairosvg import svg2png
import cv2
import filetype
from filetype.match import image_matchers
from progress.bar import ChargingBar
import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch
from entity import Entity
from common import defaults, mkdir
import imtool
import pipelines
BATCH_SIZE = 16
PARALLEL = 20
MIN_BACKGROUND_SIZE = 500
def process_bg(b):
imw = cv2.imread(b.path)
im, bb = imtool.remove_white(imw)
annot = None
label = b.path.replace('png', 'txt')
if os.path.exists(label):
# rewrite label with new coordinates
[ww, wh, _] = imw.shape
[iw, ih, _] = im.shape
es = imtool.read_centroids(label)
l = ''
for e in es:
[i, p, c] = e.values()
[x,y,w,h] = [
max((c.x*ww - bb.x)/iw, 0),
max((c.y*wh - bb.y)/ih, 0),
(c.w*ww)/iw,
(c.h*wh)/ih
]
l += f'{int(i)} {x} {y} {w} {h}\n'
annot = l
if im.shape[0] > args.minbgsize and im.shape[1]> args.minbgsize:
return im, annot
else:
raise Exception(f'droping {b.path} after remove_white => {im.shape}')
def filter_bgs(bgs):
ret = []
for b in bgs:
if b.path.endswith('txt'): continue
try:
img, annot = process_bg(b)
except Exception as e:
print(f'drop: {e}')
continue
ret.append((b, img, annot))
return ret
def process(args):
dest_images_path = os.path.join(args.dest, 'images')
dest_labels_path = os.path.join(args.dest, 'labels')
mkdir.make_dirs([dest_images_path, dest_labels_path])
logo_images = []
logo_alphas = []
logo_labels = {}
db = {}
with open(defaults.MAIN_CSV_PATH, 'r') as f:
reader = csv.DictReader(f)
db = {e.bco: e for e in [Entity.from_dict(d) for d in reader]}
background_images = []
for d in args.background:
background_images.extend(os.scandir(d))
print(f'filtering {len(background_images)} background images from {args.background}')
background_images = filter_bgs(background_images)
assert(len(background_images))
stats = {
'failed': 0,
'ok': 0
}
for d in os.scandir(args.logos):
img = None
if not d.is_file():
stats['failed'] += 1
continue
try:
if filetype.match(d.path, matchers=image_matchers):
img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED)
else:
png = svg2png(url=d.path)
img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
label = db[d.name.split('.')[0]].id
(h, w, c) = img.shape
if c == 3:
img = imtool.add_alpha(img)
if img.ndim < 3:
print(f'very bad dim: {img.ndim}')
(h, w, c) = img.shape
assert(w > 10)
assert(h > 10)
stats['ok'] += 1
(b, g, r, _) = cv2.split(img)
alpha = img[:, :, 3]/255
d = cv2.merge([b, g, r])
logo_images.append(d)
# tried id() tried __array_interface__, tried tagging, nothing works
logo_labels.update({d.tobytes(): label})
# XXX(xaiki): we pass alpha as a float32 heatmap,
# because imgaug is pretty strict about what data it will process
# and that we want the alpha layer to pass the same transformations as the orig
logo_alphas.append(np.dstack((alpha, alpha, alpha)).astype('float32'))
except Exception as e:
stats['failed'] += 1
print(f'error loading: {d.path}: {e}')
print(stats)
assert(len(logo_alphas) == len(logo_images))
print(f"will process {len(logo_images)} images on {len(background_images)} backgrounds")
# so that we don't get a lot of the same logos on the same page.
zipped = list(zip(logo_images, logo_alphas))
random.shuffle(zipped)
logo_images, logo_alphas = zip(*zipped)
n = len(logo_images)
batches = []
for i in range(math.floor(n*2/BATCH_SIZE)):
s = (i*BATCH_SIZE)%n
e = min(s + BATCH_SIZE, n)
le = max(0, BATCH_SIZE - (e - s))
a = logo_images[0:le] + logo_images[s:e]
h = logo_alphas[0:le] + logo_alphas[s:e]
assert(len(a) == BATCH_SIZE)
batches.append(UnnormalizedBatch(images=a,heatmaps=h))
bar = ChargingBar(f'augment ({len(logo_images)} logos {len(background_images)} bgs)', max=(len(batches)**2)/3*len(background_images))
# We use a single, very fast augmenter here to show that batches
# are only loaded once there is space again in the buffer.
pipeline = pipelines.HUGE
def create_generator(lst):
for b in lst:
print(f"Loading next unaugmented batch...")
yield b
batches_generator = create_generator(batches)
batch = 0
with pipeline.pool(processes=args.parallel, seed=1) as pool:
batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5)
print(f"Requesting next augmented batch...{batch}/{len(batches)}")
for i, batch_aug in enumerate(batches_aug):
idx = list(range(len(batch_aug.images_aug)))
random.shuffle(idx)
for j, (d, img, annot) in enumerate(background_images):
basename = d.name.replace('.png', f'.{i}.{j}')
annotations = []
try:
annotations.append(annot.rstrip())
except:
pass
for k in range(math.floor(len(batch_aug.images_aug)/3)):
bar.next()
logo_idx = (j+k*4)%len(batch_aug.images_aug)
orig = batch_aug.images_unaug[logo_idx]
label = logo_labels[orig.tobytes()]
logo = batch_aug.images_aug[logo_idx]
assert(logo.shape == orig.shape)
# XXX(xaiki): we get alpha from heatmap, but will only use one channel
# we could make mix_alpha into mix_mask and pass all 3 chanels
alpha = cv2.split(batch_aug.heatmaps_aug[logo_idx])
try:
bb = imtool.mix_alpha(img, logo, alpha[0],
random.random(), random.random())
c = bb.to_centroid(img.shape)
annotations.append(c.to_annotation(label))
except AssertionError as err:
print(f'couldnt process {i}, {j}: {err}')
except Exception as err:
print(f'error in mix pipeline: {err}')
try:
cv2.imwrite(f'{dest_images_path}/{basename}.png', img)
label_path = f"{dest_labels_path}/{basename}.txt"
with open(label_path, 'a') as f:
f.write('\n'.join(annotations))
except Exception:
print(f'couldnt write image {basename}')
if i < len(batches)-1:
print(f"Requesting next augmented batch...{batch}/{len(batches)}")
batch += 1
bar.finish()
if __name__ == '__main__':
import argparse
print("✨ augmenting data")
parser = argparse.ArgumentParser(description='mix backgrounds and logos into augmented data for YOLO')
parser.add_argument('--logos', metavar='logos', type=str,
default=defaults.LOGOS_DATA_PATH,
help='dir containing logos')
parser.add_argument('--background', metavar='backgrounds', type=str,
nargs='+',
default=[defaults.SCREENSHOT_PATH, defaults.FISH_PATH],
help='dir containing background plates')
parser.add_argument('--dst', dest='dest', type=str,
default=defaults.AUGMENTED_DATA_PATH,
help='dest dir')
parser.add_argument('--parallel', metavar='parallel', type=int,
default=PARALLEL,
help='number of concurrent jobs')
parser.add_argument('--min-background-size', dest='minbgsize', type=int,
default=MIN_BACKGROUND_SIZE, help='minimum background size')
args = parser.parse_args()
process(args)
|