File size: 7,877 Bytes
f1ab0d5
 
 
 
 
1a24a58
8f69832
4e1c07d
f1ab0d5
 
ae7097b
f1ab0d5
ea75eb1
fc32112
f1ab0d5
 
 
 
 
 
 
 
4e1c07d
 
e7640ca
 
 
 
f1ab0d5
 
 
 
 
 
 
1a24a58
 
 
 
 
e7640ca
 
4e1c07d
e7640ca
 
 
4e1c07d
e7640ca
4e1c07d
e7640ca
 
 
 
 
 
05c71b4
4e1c07d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c71b4
 
 
 
 
4e1c07d
f1ab0d5
4e1c07d
e7640ca
 
 
 
 
 
 
f1ab0d5
1a24a58
4e1c07d
e7640ca
1a24a58
 
 
 
 
 
e7640ca
f1ab0d5
eb762cb
 
1a24a58
 
 
 
 
 
 
 
 
 
 
e7640ca
 
1a24a58
f1ab0d5
5dea5bb
da78e91
8f69832
 
 
 
 
 
5dea5bb
90c5fac
f1ab0d5
63501c1
4e1c07d
 
 
 
f1ab0d5
4e1c07d
f1ab0d5
 
 
4e1c07d
f1ab0d5
8f69832
 
26ef429
8f69832
 
 
 
 
 
1a24a58
 
 
8f69832
1a24a58
8f69832
9996fa3
8f69832
9996fa3
 
 
 
 
8f69832
 
 
d9777e0
 
 
 
1a24a58
d9777e0
 
9996fa3
 
 
 
 
 
 
 
 
 
 
8f69832
 
 
 
74a29fd
8f69832
 
9996fa3
8f69832
 
1a24a58
8f69832
9477f68
8f69832
1a24a58
f1ab0d5
f934e8e
 
1a24a58
f934e8e
f1ab0d5
 
e34b2c2
f1ab0d5
 
f7e5bce
f1ab0d5
f7e5bce
 
f1ab0d5
 
f934e8e
f1ab0d5
 
 
8f69832
f7e5bce
 
 
 
 
 
 
 
 
 
 
f1ab0d5
90c5fac
 
f1ab0d5
e34b2c2
f1ab0d5
 
4e1c07d
 
05c71b4
f1ab0d5
 
 
4e1c07d
d48129a
90c5fac
4b0ef46
 
226d6f5
f1ab0d5
4e1c07d
f1ab0d5
4e1c07d
 
 
 
 
f7e5bce
 
8f69832
f1ab0d5
 
a865450
4b0ef46
 
 
 
 
a865450
 
 
4b0ef46
 
f1ab0d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3

import os
import math
import cv2
import base64
import numpy as np
from typing import NamedTuple, Tuple, List

from entity import Entity
from common import mkdir

TILE_SIZE = 416
TILE_OVERLAP = 0.8

class BoundingBox(NamedTuple):
    x: float = 0.0
    y: float = 0.0
    w: float = 0.0
    h: float = 0.0

    @classmethod
    def from_centroid(cls, c, shape):
        (ih, iw, ic) = shape
        self = cls(x=math.floor(w*(c.x - c.w/2))
                   , y=math.floor(h*(c.y - c.h/2))
                   , w=math.ceil(w*c.w)
                   , h=math.ceil(h*c.h))
        return self

    @classmethod
    def from_dict(cls, d):
        self = cls(x=d['x'], y=d['y'], w=d['width'], h=d['height'])
        return self

    @classmethod
    def from_arr(cls, a):
        self = cls(*a)
        return self

    @property
    def start(self):
        return floor_point(self.x, self.y)

    @property
    def end(self):
        return floor_point(self.x + self.w, self.y + self.h)

    def to_centroid(self, shape):
        (h, w, c) = shape
        return Centroid(x=math.floor(self.x + self.w/2)/w
                   , y=math.floor(self.y + self.h/2)/h
                   , w=math.ceil(self.w)/w
                   , h=math.ceil(self.h)/h)

    def intersect(self, f, r: float = 0.8):
        six = self.x - f.x
        siy = self.y - f.y
        eix = six + self.w
        eiy = siy + self.h

        if six < 0:
            if six + self.w < 0:
                return None
            six = 0
        if siy < 0:
            if siy + self.h < 0:
                return None
            siy = 0
        if eix > f.w:
            if eix - self.w > f.w:
                return None
            eix = f.w
        if eiy > f.h:
            if eiy - self.h > f.h:
                return None
            eiy = f.h

        i = BoundingBox(six, siy, eix - six, eiy - siy)
        if (i.w*i.h) < (self.w*self.h)*r:
            return None

        return i

class Centroid(BoundingBox):
    def to_bounding_box(self, shape):
        (h, w, c) = shape

        return BoundingBox(
            x=math.floor(w*(self.x - self.w/2))
            , y=math.floor(h*(self.y - self.h/2))
            , w=math.ceil(w*self.w)
            , h=math.ceil(h*self.h))

    def to_annotation(self, id: int):
        return f'{id} {self.x} {self.y} {self.w} {self.h}'

def read_base64(data):
    ib = base64.b64decode(data[22:])
    arr = np.frombuffer(ib, dtype = np.uint8)
    return cv2.imdecode(arr, flags=cv2.IMREAD_COLOR)

def read_markers(filename: str, Type: type):
    ret = []
    with open(filename, 'r') as f:
        lines = f.readlines()
        for l in lines:
            try:
                (b, x,y,w,h, p) = [float(i) for i in l.split(' ')]
            except:
                try:
                    (b, x,y,w,h) = [float(i) for i in l.split(' ')]
                except:
                    continue
                p = -1
            ret.append({"class": b, "prob": p, "box": Type(x,y,w,h)})
    assert(len(ret))
    return ret

def read_centroids(filename: str):
    return read_markers(filename, Centroid)

def coord_dict_to_point(c: dict):
    return coord_to_point(c['x'], c['y'], c['width'], c['height'])

def coord_to_point(cx, cy, cw, ch):
    x = math.floor(cx + cw/2)
    y = math.floor(cy + ch/2)
    return f"{x} {y} {math.ceil(cw)} {math.ceil(ch)}"

def floor_point(x: float, y: float):
    return (math.floor(x), math.floor(y))

def cut_img(im, s: Tuple[float, float], e: Tuple[float, float]):
    x1 = math.floor(s[0])
    y1 = math.floor(s[1])
    x2 = math.floor(e[0])
    y2 = math.floor(e[1])

    return im[y1:y2, x1:x2]

def cut_logo(im, l):
    (x, y, w, h) = floor_logo(l)
    return im[y:y+h, x:x+w]

def add_alpha(img):
    b, g, r = cv2.split(img)
    a = np.ones(b.shape, dtype=b.dtype) * 50 
    return cv2.merge((b,g,r,a))

def remove_white(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY)
    gray = 255*(gray<128)
    coords = cv2.findNonZero(gray)
    # Find minimum spanning bounding box
    bb = BoundingBox(*cv2.boundingRect(coords)) 
    rect = img[bb.y:bb.y+bb.h, bb.x:bb.x+bb.w] # Crop the image - note we do this on the original image

    return rect, bb


def mix(a, b, fx, fy):
    alpha = b[:, :, 3]/255

    return _mix_alpha(a, b, alpha, fx, fy)

def mix_alpha(a, b, ba, fx, fy):
    (ah, aw, ac) = a.shape
    (bh, bw, bc) = b.shape

    p = 0.2
    if (aw*p < bw or ah*p < bh):
        f = min(p*aw/bw, p*ah/bh)
        nw, nh = floor_point(bw*f, bh*f)
        #print(f'resizing to fit in {aw}x{ah}\t {bw}x{bh}\t=> {nw}x{nh}\tfactor {f}')
        r = cv2.resize(b, (nw, nh), interpolation = cv2.INTER_LINEAR)
        rba = cv2.resize(ba, (nw, nh), interpolation = cv2.INTER_LINEAR)

        return mix_alpha(a, r, rba, fx, fy)

    assert bw > 10, f'b({bw}) too small'
    assert bh > 10, f'b({bh}) too small'

    return _mix_alpha(a, b, ba, fx, fy)

def _mix_alpha(a, b, ba, fx, fy):
    (ah, aw, ac) = a.shape
    (bh, bw, bc) = b.shape

    x = math.floor(fx*(aw - bw))
    y = math.floor(fy*(ah - bh))

    # handle transparency
    mat = a[y:y+bh,x:x+bw]
    cols = b[:, :, :3]
    mask = np.dstack((ba, ba, ba))

    a[y:y+bh,x:x+bw] = mat * (1 - mask) + cols * mask
    #a[y:y+bh,x:x+bw] = cols

    return BoundingBox(x, y, bw, bh)

def crop(id, fn, logos: List[Centroid], out = './data/squares'):
    basename = os.path.basename(fn).replace('.png', '')
    img_out = f"{out}/images"
    txt_out = f"{out}/labels"
    debug_out = f"{defaults.DEBUG_PATH}/{out}"
    mkdir.make_dirs([debug_out, img_out, txt_out])

    im = cv2.imread(fn)
    rim = cv2.imread(fn)

    (h, w, c) = im.shape
    (tw, th) = (min(w, TILE_SIZE), min(h, TILE_SIZE))
    (tx, ty)= (
        math.ceil(w/(tw*TILE_OVERLAP)),
        math.ceil(h/(th*TILE_OVERLAP))
    )

    print('shape', basename, tx, ty, w, h)
    for x in range(tx):
        for y in range(ty):
            color = (0,x*(255/tx),y*(255/ty))
            logo_color = (255, 0, 0)

            if tx < 2:
                xs = 0
            else:
                xs = (w - tw)*x/(tx - 1)
            if ty < 2:
                ys = 0
            else:
                ys = (h - th)*y/(ty - 1)

            f = BoundingBox(xs, ys, tw, th)

            start = floor_point(f.x, f.y)
            end = floor_point(f.x + f.w, f.y + f.h)

            rim = cv2.rectangle(rim, start, end, color, 10)
            li = []
            for l in logos:
                bl = l.to_bounding_box(im.shape)
                rim = cv2.rectangle(rim, bl.start, bl.end, logo_color, 5)
                p = bl.intersect(f, 0.5)
                if p:
                    li.append(p)

            nim = cut_img(im, start, end)
            rnim = cut_img(rim, start, end)
            img_name =f"{img_out}/{basename}-x{x}y{y}.jpg"
            txt_name =f"{txt_out}/{basename}-x{x}y{y}.txt"

            cv2.imwrite(img_name, nim)
            if len(li):
                with open(txt_name, 'w') as label:
                    for p in li:
                        dim = cv2.rectangle(rnim, p.start, p.end, logo_color, 5)
                        lc = p.to_centroid((TILE_SIZE, TILE_SIZE, 3))

                        a = f"{int(id)} {lc.x} {lc.y} {lc.w} {lc.h}"
                        label.write(a)
                        cv2.imwrite(f'{debug_out}/{basename}{x}{y}.debug.png', dim)

    cv2.imwrite(f'{debug_out}/{basename}.debug.png', rim)

if __name__ == '__main__':
    i = 0
    with os.scandir('./data/') as it:
        for e in it:
            if e.name.endswith('.txt') and e.is_file():
                print(e.name)
                try:
                    i+=1
                    bco, boxes = read_bounding_boxes(e.path)
                    crop(i, e.path.replace('.txt', '.png'), boxes)
                except Exception as err:
                    print(err)