Spaces:
Sleeping
Sleeping
File size: 8,934 Bytes
a22c27d b58d083 194ef35 a22c27d 0c4f5df 498211d a22c27d bb0138a a22c27d bb0138a a22c27d bb0138a a22c27d cd5b322 7535b30 119300d cd5b322 7535b30 cd5b322 a22c27d cd5b322 a22c27d c1e4972 8479add a22c27d 5a9dd82 a22c27d 5a9dd82 a22c27d bb0138a c1e4972 a22c27d c1e4972 a22c27d cd5b322 a22c27d cd5b322 a22c27d 250f679 a33d005 cd5b322 a22c27d e838a85 90b8da7 119300d a22c27d 5a9dd82 bb0138a 7535b30 c1e4972 d14403d 1bc66c9 c1e4972 a22c27d 119300d cd5b322 90b8da7 a22c27d 119300d a22c27d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import pandas as pd
import numpy as np
from NSEDownload import stocks
from time import sleep
import os
from gradio_rangeslider import RangeSlider
## Get 10 year data from NSE
def get_data(symb):
symb = symb.upper()
if os.path.exists(f'{symb}.csv'):
return
l = []
year = 2010
for i in range(0,10,5):
year = i + year
df = stocks.get_data(stock_symbol=symb, start_date=f'1-1-{year}', end_date=f'1-1-{year+5}')
df.reset_index(drop=False,inplace=True)
# print(df.head())
l.append(df)
sleep(15)
dff = pd.concat(l,ignore_index=True)
dff.to_csv(f'{symb}.csv',index=False,encoding='utf-8')
return
# Calculate profit/loss based on stock price movement after condition is met
def calculate_profit_loss(stock_data,days_to_monitor):
buy_sell_actions = []
for i in range(len(stock_data)):
if stock_data['condition'].iloc[i] == 1: # Trigger condition met
buy_price = stock_data['Open Price'].iloc[i+1] # Buy on the next day's open price
monitored_prices = stock_data.iloc[i+1:i+days_to_monitor] # Monitor the next 8 days
sell_price = None
for j in range(len(monitored_prices)):
no_trigger = 0
open_price = monitored_prices['Open Price'].iloc[j]
close_price = monitored_prices['Close Price'].iloc[j]
change_percent = (close_price - buy_price) / buy_price * 100
# Check for the +2%, +3%, +5%, +8% thresholds and set stop loss
if change_percent >= 8:
sell_price = close_price
break
elif change_percent >= 5:
sell_price = max(sell_price or 0, close_price)
if change_percent <= 5:
break
elif change_percent >= 3:
sell_price = max(sell_price or 0, close_price)
if change_percent <= 3:
break
elif change_percent >= 2:
sell_price = max(sell_price or 0, close_price)
if change_percent <= 2:
break
# Stop-loss at -3%
elif change_percent <= -3:
sell_price = close_price
break
# If no triggers happen, sell at the 8th day's closing price
if sell_price is None:
sell_price = monitored_prices['Close Price'].iloc[-1]
no_trigger = 1
# Calculate profit/loss percentage
profit_loss_percent = (sell_price - buy_price) / buy_price * 100
buy_sell_actions.append({
'Buy Date': stock_data['Date'].iloc[i+1],
'Sell Date': monitored_prices['Date'].iloc[j] if sell_price != monitored_prices['Close Price'].iloc[-1] else monitored_prices['Date'].iloc[-1],
'Buy Price': buy_price,
'Sell Price': sell_price,
'Profit/Loss (%)': profit_loss_percent,
'No trigger': no_trigger
})
dft = pd.DataFrame(buy_sell_actions)
dff = pd.DataFrame(columns = ['+ve trade probability','Median returns','Mean returns','Best return','Worst return'])
dff['+ve trade probability'] = len(dft[dft['Profit/Loss (%)'] > 0]) / len(dft)
dff['Mean returns'] = dft['Profit/Loss (%)'].mean()
dff['Median returns'] = dft['Profit/Loss (%)'].median()
dff['Best return'] = dft['Profit/Loss (%)'].max()
dff['Worst return'] = dft['Profit/Loss (%)'].min()
print(dff.head())
return dft, dff
# Example function to simulate loading and processing stock data
def get_stock_data(stock_name,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2):
stock_name = stock_name.upper()
get_data(stock_name)
stock_data = pd.read_csv(f'{stock_name}.csv')
# Ensure the 'Date' column is in datetime format
stock_data['Date'] = pd.to_datetime(stock_data['Date'])
# Sort data by date
stock_data = stock_data.sort_values(by='Date')
# Calculate daily RSI
def calculate_rsi(data, window):
delta = data['Close Price'].diff(1)
# print(delta)
gain = np.where(delta > 0, delta, 0)
loss = np.where(delta < 0, -delta, 0)
avg_gain = pd.Series(gain).rolling(window=window).mean()
avg_loss = pd.Series(loss).rolling(window=window).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
return rsi
# Add a new column 'Daily RSI' for 14-day RSI
stock_data['Daily RSI'] = calculate_rsi(stock_data, window=rsi_window)
# Function to calculate sliding weekly RSI
def calculate_sliding_weekly_rsi(data):
global weekly_rsi
weekly_rsi = []
for i in range(7):
stock_data1 = stock_data.iloc[i::7].reset_index(drop=True)
stock_data1['weekly RSI'] = calculate_rsi(stock_data1, window=rsi_window)
weekly_rsi.append(stock_data1)
stock_data2 = pd.concat(weekly_rsi,ignore_index=True)
stock_data.drop_duplicates(subset=['Date'],keep='first',inplace=True)
stock_data2 = stock_data2.sort_values(by='Date')
return stock_data2
# Calculate sliding weekly RSI
stock_data = calculate_sliding_weekly_rsi(stock_data)
stock_data.reset_index(drop=True,inplace=True)
## Applying the condition
for i in range(previous_n_days, len(stock_data)):
prev_n_days_rsi = stock_data['Daily RSI'][i-previous_n_days:i]
if all(prev_n_days_rsi < rsi_threshold1) and rsi_threshold2[0] <= stock_data['Daily RSI'].iloc[i] <= rsi_threshold2[1]:
stock_data.at[i, 'condition'] = 1
fstock = stock_data[stock_data['condition']==1].reset_index(drop=True)
profit_data, summary_data = calculate_profit_loss(stock_data,days_to_monitor)
# Returning two dataframes: One for the full stock data, another for RSI values
return fstock, profit_data,summary_data
# Function to save CSV file and return its path
def save_to_csv(stock_input,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2):
stock_name = stock_input.upper()
fstock, profit_data,summary_data = get_stock_data(stock_name,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2)
csv_file_path = f'{stock_name}.csv'
# fstock['Date'] = pd.to_datetime(fstock['Date']).dt.date
# profit_data['Date'] = pd.to_datetime(profit_data['Date']).dt.date
return profit_data, summary_data, csv_file_path
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style="text-align: center; color: #4CAF50;">Stock Analysis Interface</h1>
<p style="text-align: center;">Enter a stock Symbol and Calculate the algo returns.</p>
"""
)
with gr.Row():
with gr.Column():
stock_input = gr.Textbox(label="Enter Stock Symbol", placeholder="e.g., CANBK", lines=1)
rsi_window_slider = gr.Slider(minimum=1, maximum=30, value=14, label="RSI Window (Days)", step=1)
days_to_monitor = gr.Slider(minimum=1, maximum=30, value=8, label="Days to monitor stock once condition is met", step=1)
rsi_threshold1 = gr.Slider(minimum=1, maximum=100, value=65, label="Previous RSI threshold", step=1)
previous_n_days = gr.Slider(minimum=1, maximum=180, value=30, label="N -> days to check for RSI threshold", step=1)
rsi_threshold2 = RangeSlider(label="Current RSI Range", minimum=0, maximum=100, value=[65, 70])
text1 = "## The range is: {min} to {max}"
range_ = gr.Markdown(value=text1.format(min=0, max=100))
rsi_threshold2.change(lambda s: text.format(min=s[0], max=s[1]), rsi_threshold2, range_,
show_progress="hide", trigger_mode="always_last")
submit_button = gr.Button("Submit", variant="primary")
with gr.Column():
gr.Markdown("<h3 style='text-align: center;'>Output</h3>")
# output_stock_data = gr.DataFrame(label="Dates where Conditions met", interactive=False)
output_pl_data = gr.DataFrame(label="Profit and Loss Statement", interactive=False)
output_summary_data = gr.DataFrame(label="Returns Summary", interactive=False)
csv_download = gr.File(label="Download the full CSV")
# When the button is clicked, show the two dataframes and provide a downloadable CSV
submit_button.click(save_to_csv, inputs=[stock_input,rsi_window_slider,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2], outputs=[output_pl_data, output_summary_data,csv_download])
# Launch the Gradio interface
demo.launch()
|