File size: 6,374 Bytes
5e4969d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "ylbT549oymIl"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/home/vasim/Khatir/Programming/ML Projects/gemini-pro with docs/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
            "  from .autonotebook import tqdm as notebook_tqdm\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "execution_count": 1,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "import os\n",
        "from langchain.document_loaders import (\n",
        "    PyPDFLoader,\n",
        "    TextLoader,\n",
        "    Docx2txtLoader\n",
        ")\n",
        "\n",
        "from langchain.text_splitter import CharacterTextSplitter\n",
        "# from PyPDF2 import PdfReader\n",
        "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
        "from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
        "import google.generativeai as genai\n",
        "from langchain.vectorstores import FAISS\n",
        "from langchain_google_genai import ChatGoogleGenerativeAI\n",
        "from langchain.chains.question_answering import load_qa_chain\n",
        "from langchain.prompts import PromptTemplate\n",
        "from langchain.memory import ConversationBufferMemory\n",
        "from dotenv import load_dotenv\n",
        "load_dotenv()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {},
      "outputs": [],
      "source": [
        "os.chdir(\"../\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {},
      "outputs": [],
      "source": [
        "from src.utils import (\n",
        "    process_files, answer_query, extract_text_from_file\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "a8tNUutJB9EA"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Running on local URL:  http://127.0.0.1:7862\n",
            "\n",
            "To create a public link, set `share=True` in `launch()`.\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ],
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Text extracted\n",
            "Chunks splitted\n",
            "Document search created\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/home/vasim/Khatir/Programming/ML Projects/gemini-pro with docs/.venv/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.\n",
            "  warn_deprecated(\n"
          ]
        }
      ],
      "source": [
        "# Gradio App\n",
        "import gradio as gr\n",
        "\n",
        "gr.close_all()\n",
        "\n",
        "title = \"\"\n",
        "description = f\"Chat with any docs\"\n",
        "\n",
        "# def answer_query(message, history):\n",
        "#     docs = db.similarity_search(message)\n",
        "#     message = agent(\n",
        "#         {\"input_documents\":docs, \"question\": message}\n",
        "#         ,return_only_outputs=True)\n",
        "#     return message['output_text']\n",
        "\n",
        "\n",
        "chatbot = gr.Chatbot(label=\"ExploreText\")\n",
        "\n",
        "with gr.Blocks(\n",
        "    title=\"ExploreText\",\n",
        "    ) as textbot:\n",
        "\n",
        "    gr.Markdown(\"# <center> Welcome to ExploreDoc Web App</center>\")\n",
        "    \n",
        "    with gr.Accordion(\"Upload a file here\", open=False):\n",
        "        file_output = gr.File()\n",
        "        upload_button = gr.UploadButton(\"Click to Upload a File\", file_types=[\"txt\",\"doc\",\"pdf\"])\n",
        "        upload_button.upload(process_files, upload_button, file_output)\n",
        "\n",
        "    # with gr.Row(\"Chat with Text\"):\n",
        "    gr.ChatInterface(fn=answer_query, chatbot=chatbot, submit_btn=\"Ask\", undo_btn=None, retry_btn=None, clear_btn=None)\n",
        "    gr.Markdown(\"<center>  Developed by <a href='https://92-vasim.github.io' target='_blank'>Mohammed Vasim<a/> | AI Engineer & Computer Vision Engineer @ ZestIoT.  </center>\")\n",
        "        \n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    textbot.queue().launch()\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.10.12"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}