File size: 5,575 Bytes
e483cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aafcc3
 
 
 
 
 
 
 
 
 
 
e483cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aafcc3
 
 
e483cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
The script is based on https://github.com/facebookresearch/detectron2/blob/master/tools/train_net.py. 
"""

import logging
import os
import json
from collections import OrderedDict
import torch
import sys 
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg

from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets import register_coco_instances

from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import (
    COCOEvaluator,
    DatasetEvaluators,
    SemSegEvaluator,
    verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA
import pandas as pd

class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains pre-defined default logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can use the cleaner
    "SimpleTrainer", or write your own training loop. You can use
    "tools/plain_train_net.py" as an example.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Returns:
            DatasetEvaluator or None

        It is not implemented by default.
        """
        return COCOEvaluator(dataset_name, cfg, True, output_folder)

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA
        # Only support some R-CNN models.
        logger.info("Running inference with test-time augmentation ...")
        model = GeneralizedRCNNWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res

    @classmethod
    def eval_and_save(cls, cfg, model):
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, 'eval.csv'))
        return res

def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)

    with open(args.json_annotation_train, 'r') as fp:
        anno_file = json.load(fp)

    cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
    del anno_file

    cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",)
    cfg.DATASETS.TEST = (f"{args.dataset_name}-val",)

    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
    
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)

        # Save the evaluation results
        pd.DataFrame(res).to_csv(f'{cfg.OUTPUT_DIR}/eval.csv')
        return res

    """
    If you'd like to do anything fancier than the standard training logic,
    consider writing your own training loop (see plain_train_net.py) or
    subclassing the trainer.
    """
    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    trainer.register_hooks(
            [hooks.EvalHook(0, lambda: trainer.eval_and_save(cfg, trainer.model))]
    )
    if cfg.TEST.AUG.ENABLED:
        trainer.register_hooks(
            [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
        )
    return trainer.train()


if __name__ == "__main__":
    parser = default_argument_parser()

    # Extra Configurations for dataset names and paths
    parser.add_argument("--dataset_name",          default="", help="The Dataset Name")
    parser.add_argument("--json_annotation_train", default="", metavar="FILE", help="The path to the training set JSON annotation")
    parser.add_argument("--image_path_train",      default="", metavar="FILE", help="The path to the training set image folder")
    parser.add_argument("--json_annotation_val",   default="", metavar="FILE", help="The path to the validation set JSON annotation")
    parser.add_argument("--image_path_val",        default="", metavar="FILE", help="The path to the validation set image folder")

    args = parser.parse_args()
    print("Command Line Args:", args)
    
    # Register Datasets 
    dataset_name = args.dataset_name
    register_coco_instances(f"{dataset_name}-train", {}, 
                            args.json_annotation_train, 
                            args.image_path_train)

    register_coco_instances(f"{dataset_name}-val",   {}, 
                            args.json_annotation_val,   
                            args.image_path_val)

    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )