File size: 7,097 Bytes
e483cda
 
 
 
 
 
 
 
 
802b7c7
e483cda
 
802b7c7
e483cda
 
 
29d3845
 
 
 
 
 
 
e483cda
 
 
 
 
 
 
802b7c7
 
 
29d3845
3788e82
802b7c7
 
 
29d3845
 
 
802b7c7
 
 
 
 
 
 
 
 
 
 
29d3845
 
802b7c7
e2c51cc
802b7c7
 
c0fc0e9
e483cda
 
 
 
 
 
 
c0fc0e9
3e88d4b
 
e483cda
 
802b7c7
 
 
 
 
e483cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d3845
e483cda
 
 
 
 
 
 
9aafcc3
 
 
 
29d3845
9aafcc3
 
 
 
29d3845
9aafcc3
e483cda
c0fc0e9
e483cda
 
 
 
 
29d3845
deb96d2
 
e483cda
 
29d3845
e483cda
 
 
 
 
 
 
 
 
 
 
 
 
c0fc0e9
29d3845
 
 
 
 
 
c0fc0e9
29d3845
 
 
 
 
 
e483cda
 
 
 
 
 
 
 
c0fc0e9
e483cda
 
 
 
 
 
29d3845
e483cda
 
2e14bbc
 
 
e483cda
 
 
 
 
 
 
9aafcc3
c0fc0e9
9aafcc3
e483cda
 
29d3845
e483cda
 
 
 
 
 
 
 
29d3845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e483cda
 
2e14bbc
ad8dc97
 
e483cda
 
 
 
 
 
 
 
c0fc0e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
The script is based on https://github.com/facebookresearch/detectron2/blob/master/tools/train_net.py. 
"""

import logging
import os
import json
from collections import OrderedDict
import detectron2.utils.comm as comm
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetMapper, build_detection_train_loader

from detectron2.data.datasets import register_coco_instances

from detectron2.engine import (
    DefaultTrainer,
    default_argument_parser,
    default_setup,
    hooks,
    launch,
)
from detectron2.evaluation import (
    COCOEvaluator,
    verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA
import pandas as pd


def get_augs(cfg):
    """Add all the desired augmentations here. A list of availble augmentations
    can be found here:
       https://detectron2.readthedocs.io/en/latest/modules/data_transforms.html
    """
    augs = [
        T.ResizeShortestEdge(
            cfg.INPUT.MIN_SIZE_TRAIN,
            cfg.INPUT.MAX_SIZE_TRAIN,
            cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
        )
    ]
    if cfg.INPUT.CROP.ENABLED:
        augs.append(
            T.RandomCrop_CategoryAreaConstraint(
                cfg.INPUT.CROP.TYPE,
                cfg.INPUT.CROP.SIZE,
                cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
                cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
            )
        )
    horizontal_flip: bool = cfg.INPUT.RANDOM_FLIP == "horizontal"
    augs.append(T.RandomFlip(horizontal=horizontal_flip, vertical=not horizontal_flip))
    # Rotate the image between -90 to 0 degrees clockwise around the centre
    augs.append(T.RandomRotation(angle=[-90.0, 0.0]))
    return augs


class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains pre-defined default logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can use the cleaner
    "SimpleTrainer", or write your own training loop. You can use
    "tools/plain_train_net.py" as an example.

    Adapted from:
        https://github.com/facebookresearch/detectron2/blob/master/projects/DeepLab/train_net.py
    """

    @classmethod
    def build_train_loader(cls, cfg):
        mapper = DatasetMapper(cfg, is_train=True, augmentations=get_augs(cfg))
        return build_detection_train_loader(cfg, mapper=mapper)

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Returns:
            DatasetEvaluator or None

        It is not implemented by default.
        """
        return COCOEvaluator(dataset_name, cfg, True, output_folder)

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA
        # Only support some R-CNN models.
        logger.info("Running inference with test-time augmentation ...")
        model = GeneralizedRCNNWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res

    @classmethod
    def eval_and_save(cls, cfg, model):
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, "eval.csv"))
        return res


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()

    if args.config_file != "":
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)

    with open(args.json_annotation_train, "r") as fp:
        anno_file = json.load(fp)

    cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
    del anno_file

    cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",)
    cfg.DATASETS.TEST = (f"{args.dataset_name}-val",)
    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    # Register Datasets
    register_coco_instances(
        f"{args.dataset_name}-train",
        {},
        args.json_annotation_train,
        args.image_path_train,
    )

    register_coco_instances(
        f"{args.dataset_name}-val", 
        {}, 
        args.json_annotation_val, 
        args.image_path_val
    )
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)

        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)

        # Save the evaluation results
        pd.DataFrame(res).to_csv(f"{cfg.OUTPUT_DIR}/eval.csv")
        return res

    # Ensure that the Output directory exists
    os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

    """
    If you'd like to do anything fancier than the standard training logic,
    consider writing your own training loop (see plain_train_net.py) or
    subclassing the trainer.
    """
    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    trainer.register_hooks(
        [hooks.EvalHook(0, lambda: trainer.eval_and_save(cfg, trainer.model))]
    )
    if cfg.TEST.AUG.ENABLED:
        trainer.register_hooks(
            [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
        )
    return trainer.train()


if __name__ == "__main__":
    parser = default_argument_parser()

    # Extra Configurations for dataset names and paths
    parser.add_argument(
        "--dataset_name", 
        help="The Dataset Name")
    parser.add_argument(
        "--json_annotation_train",
        help="The path to the training set JSON annotation",
    )
    parser.add_argument(
        "--image_path_train",
        help="The path to the training set image folder",
    )
    parser.add_argument(
        "--json_annotation_val",
        help="The path to the validation set JSON annotation",
    )
    parser.add_argument(
        "--image_path_val",
        help="The path to the validation set image folder",
    )
    args = parser.parse_args()
    print("Command Line Args:", args)

    # Dataset Registration is moved to the main function to support multi-gpu training
    # See ref https://github.com/facebookresearch/detectron2/issues/253#issuecomment-554216517

    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )