File size: 7,510 Bytes
33b3cd5 f9b14aa 33b3cd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os, re, json
import imagesize
from glob import glob
from bs4 import BeautifulSoup
import numpy as np
from PIL import Image
import argparse
from tqdm import tqdm
import sys
sys.path.append('..')
from utils import cocosplit
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
def cvt_coords_to_array(obj):
return np.array(
[(float(pt['x']), float(pt['y']))
for pt in obj.find_all("Point")]
)
def cal_ployarea(points):
x = points[:,0]
y = points[:,1]
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
def _create_category(schema=0):
if schema==0:
categories = \
[{"supercategory": "layout", "id": 0, "name": "Background"},
{"supercategory": "layout", "id": 1, "name": "TextRegion"},
{"supercategory": "layout", "id": 2, "name": "ImageRegion"},
{"supercategory": "layout", "id": 3, "name": "TableRegion"},
{"supercategory": "layout", "id": 4, "name": "MathsRegion"},
{"supercategory": "layout", "id": 5, "name": "SeparatorRegion"},
{"supercategory": "layout", "id": 6, "name": "OtherRegion"}]
find_categories = lambda name: \
[val["id"] for val in categories if val['name'] == name][0]
conversion = \
{
'TextRegion': find_categories("TextRegion"),
'TableRegion': find_categories("TableRegion"),
'MathsRegion': find_categories("MathsRegion"),
'ChartRegion': find_categories("ImageRegion"),
'GraphicRegion': find_categories("ImageRegion"),
'ImageRegion': find_categories("ImageRegion"),
'LineDrawingRegion':find_categories("OtherRegion"),
'SeparatorRegion': find_categories("SeparatorRegion"),
'NoiseRegion': find_categories("OtherRegion"),
'FrameRegion': find_categories("OtherRegion"),
}
return categories, conversion
_categories, _categories_conversion = _create_category(schema=0)
_info = {
"description": "PRIMA Layout Analysis Dataset",
"url": "https://www.primaresearch.org/datasets/Layout_Analysis",
"version": "1.0",
"year": 2010,
"contributor": "PRIMA Research",
"date_created": "2020/09/01",
}
def _load_soup(filename):
with open(filename, "r") as fp:
soup = BeautifulSoup(fp.read(),'xml')
return soup
def _image_template(image_id, image_path):
width, height = imagesize.get(image_path)
return {
"file_name": os.path.basename(image_path),
"height": height,
"width": width,
"id": int(image_id)
}
def _anno_template(anno_id, image_id, pts, obj_tag):
x_1, x_2 = pts[:,0].min(), pts[:,0].max()
y_1, y_2 = pts[:,1].min(), pts[:,1].max()
height = y_2 - y_1
width = x_2 - x_1
return {
"segmentation": [pts.flatten().tolist()],
"area": cal_ployarea(pts),
"iscrowd": 0,
"image_id": image_id,
"bbox": [x_1, y_1, width, height],
"category_id": _categories_conversion[obj_tag],
"id": anno_id
}
class PRIMADataset():
def __init__(self, base_path, anno_path='XML',
image_path='Images'):
self.base_path = base_path
self.anno_path = os.path.join(base_path, anno_path)
self.image_path = os.path.join(base_path, image_path)
self._ids = self.find_all_image_ids()
def __len__(self):
return len(self.ids)
def __getitem__(self, idx):
return self.load_image_and_annotaiton(idx)
def find_all_annotation_files(self):
return glob(os.path.join(self.anno_path, '*.xml'))
def find_all_image_ids(self):
replacer = lambda s: os.path.basename(s).replace('pc-', '').replace('.xml', '')
return [replacer(s) for s in self.find_all_annotation_files()]
def load_image_and_annotaiton(self, idx):
image_id = self._ids[idx]
image_path = os.path.join(self.image_path, f'{image_id}.tif')
image = Image.open(image_path)
anno = self.load_annotation(idx)
return image, anno
def load_annotation(self, idx):
image_id = self._ids[idx]
anno_path = os.path.join(self.anno_path, f'pc-{image_id}.xml')
# A dirtly hack to load the files w/wo pc- simualtaneously
if not os.path.exists(anno_path):
anno_path = os.path.join(self.anno_path, f'{image_id}.xml')
assert os.path.exists(anno_path), "Invalid path"
anno = _load_soup(anno_path)
return anno
def convert_to_COCO(self, save_path):
all_image_infos = []
all_anno_infos = []
anno_id = 0
for idx, image_id in enumerate(tqdm(self._ids)):
# We use the idx as the image id
image_path = os.path.join(self.image_path, f'{image_id}.tif')
image_info = _image_template(idx, image_path)
all_image_infos.append(image_info)
anno = self.load_annotation(idx)
for item in anno.find_all(re.compile(".*Region")):
pts = cvt_coords_to_array(item.Coords)
if 0 not in pts.shape:
# Sometimes there will be polygons with less
# than 4 edges, and they could not be appropriately
# handled by the COCO format. So we just drop them.
if pts.shape[0] >= 4:
anno_info = _anno_template(anno_id, idx, pts, item.name)
all_anno_infos.append(anno_info)
anno_id += 1
final_annotation = {
"info": _info,
"licenses": [],
"images": all_image_infos,
"annotations": all_anno_infos,
"categories": _categories}
with open(save_path, 'w') as fp:
json.dump(final_annotation, fp, cls=NpEncoder)
return final_annotation
parser = argparse.ArgumentParser()
parser.add_argument('--prima_datapath', type=str, default='./data/prima', help='the path to the prima data folders')
parser.add_argument('--anno_savepath', type=str, default='./annotations.json', help='the path to save the new annotations')
if __name__ == "__main__":
args = parser.parse_args()
print("Start running the conversion script")
print(f"Loading the information from the path {args.prima_datapath}")
dataset = PRIMADataset(args.prima_datapath)
print(f"Saving the annotation to {args.anno_savepath}")
res = dataset.convert_to_COCO(args.anno_savepath)
cocosplit.main(
args.anno_savepath,
split_ratio=0.8,
having_annotations=True,
train_save_path=args.anno_savepath.replace('.json', '-train.json'),
test_save_path=args.anno_savepath.replace('.json', '-val.json'),
random_state=24) |