Spaces:
Runtime error
Runtime error
File size: 7,942 Bytes
b3b69aa 5fbdd3c 63f1925 a6de017 5fbdd3c 9b9ffd0 5fbdd3c 9b9ffd0 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 63f1925 5fbdd3c 63f1925 5fbdd3c 3f7ce4e 5fbdd3c a6de017 5fbdd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from utils import jaccard
from datasets import load_dataset
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser
)
from preprocess import DatasetArguments, ProcessedArguments, get_words
from shared import device, GeneralArguments
from predict import ClassifierArguments, predict, TrainingOutputArguments
from segment import word_start, word_end, SegmentationArguments, add_labels_to_words
import pandas as pd
from dataclasses import dataclass, field
from typing import Optional
from tqdm import tqdm
import json
import os
import random
@dataclass
class EvaluationArguments(TrainingOutputArguments):
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
max_videos: Optional[int] = field(
default=None,
metadata={
'help': 'The number of videos to test on'
}
)
data_dir: Optional[str] = DatasetArguments.__dataclass_fields__['data_dir']
dataset: Optional[str] = DatasetArguments.__dataclass_fields__[
'validation_file']
output_file: Optional[str] = field(
default='metrics.csv',
metadata={
'help': 'Save metrics to output file'
}
)
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
"""Attach sponsor segments to closest prediction"""
for prediction in predictions:
prediction['best_overlap'] = 0
prediction['best_sponsorship'] = None
# Assign predictions to actual (labelled) sponsored segments
for sponsor_segment in sponsor_segments:
sponsor_segment['best_overlap'] = 0
sponsor_segment['best_prediction'] = None
for prediction in predictions:
j = jaccard(prediction['start'], prediction['end'],
sponsor_segment['start'], sponsor_segment['end'])
if sponsor_segment['best_overlap'] < j:
sponsor_segment['best_overlap'] = j
sponsor_segment['best_prediction'] = prediction
if prediction['best_overlap'] < j:
prediction['best_overlap'] = j
prediction['best_sponsorship'] = sponsor_segment
return sponsor_segments
def calculate_metrics(labelled_words, predictions):
metrics = {
'true_positive': 0, # Is sponsor, predicted sponsor
# Is sponsor, predicted not sponsor (i.e., missed it - bad)
'false_negative': 0,
# Is not sponsor, predicted sponsor (classified incorectly, not that bad since we do manual checking afterwards)
'false_positive': 0,
'true_negative': 0, # Is not sponsor, predicted not sponsor
}
metrics['video_duration'] = word_end(
labelled_words[-1])-word_start(labelled_words[0])
for index, word in enumerate(labelled_words):
if index >= len(labelled_words) - 1:
continue
# TODO make sure words with manual transcripts
duration = labelled_words[index+1]['start'] - word['start']
predicted_sponsor = False
for p in predictions:
# Is in some prediction
if p['start'] <= word['start'] <= p['end']:
predicted_sponsor = True
break
if predicted_sponsor:
# total_positive_time += duration
if word['category'] is not None: # Is actual sponsor
metrics['true_positive'] += duration
else:
metrics['false_positive'] += duration
else:
# total_negative_time += duration
if word['category'] is not None: # Is actual sponsor
metrics['false_negative'] += duration
else:
metrics['true_negative'] += duration
# NOTE In cases where we encounter division by 0, we say that the value is 1
# https://stats.stackexchange.com/a/1775
# (Precision) TP+FP=0: means that all instances were predicted as negative
# (Recall) TP+FN=0: means that there were no positive cases in the input data
# The fraction of predictions our model got right
# Can simplify, but use full formula
z = metrics['true_positive'] + metrics['true_negative'] + \
metrics['false_positive'] + metrics['false_negative']
metrics['accuracy'] = (
(metrics['true_positive'] + metrics['true_negative']) / z) if z > 0 else 1
# What proportion of positive identifications was actually correct?
z = metrics['true_positive'] + metrics['false_positive']
metrics['precision'] = (metrics['true_positive'] / z) if z > 0 else 1
# What proportion of actual positives was identified correctly?
z = metrics['true_positive'] + metrics['false_negative']
metrics['recall'] = (metrics['true_positive'] / z) if z > 0 else 1
# https://deepai.org/machine-learning-glossary-and-terms/f-score
s = metrics['precision'] + metrics['recall']
metrics['f-score'] = (2 * (metrics['precision'] *
metrics['recall']) / s) if s > 0 else 0
return metrics
def main():
hf_parser = HfArgumentParser((
EvaluationArguments,
ProcessedArguments,
SegmentationArguments,
ClassifierArguments,
GeneralArguments
))
evaluation_args, processed_args, segmentation_args, classifier_args, _ = hf_parser.parse_args_into_dataclasses()
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
dataset = load_dataset('json', data_files=os.path.join(
evaluation_args.data_dir, evaluation_args.dataset))['train']
video_ids = [row['video_id'] for row in dataset]
random.shuffle(video_ids) # TODO Make param
if evaluation_args.max_videos is not None:
video_ids = video_ids[:evaluation_args.max_videos]
# Load labelled data:
final_path = os.path.join(
processed_args.processed_dir, processed_args.processed_file)
with open(final_path) as fp:
final_data = json.load(fp)
total_accuracy = 0
total_precision = 0
total_recall = 0
total_fscore = 0
out_metrics = []
try:
with tqdm(video_ids) as progress:
for video_id in progress:
progress.set_description(f'Processing {video_id}')
sponsor_segments = final_data.get(video_id, [])
words = get_words(video_id)
if not words:
continue
# Make predictions
predictions = predict(video_id, model, tokenizer,
segmentation_args, words, classifier_args)
labelled_words = add_labels_to_words(words, sponsor_segments)
met = calculate_metrics(labelled_words, predictions)
met['video_id'] = video_id
out_metrics.append(met)
total_accuracy += met['accuracy']
total_precision += met['precision']
total_recall += met['recall']
total_fscore += met['f-score']
progress.set_postfix({
'accuracy': total_accuracy/len(out_metrics),
'precision': total_precision/len(out_metrics),
'recall': total_recall/len(out_metrics),
'f-score': total_fscore/len(out_metrics)
})
labelled_predicted_segments = attach_predictions_to_sponsor_segments(
predictions, sponsor_segments)
for seg in labelled_predicted_segments:
if seg['best_prediction'] is None:
print('\nNo match found for', seg)
except KeyboardInterrupt:
pass
df = pd.DataFrame(out_metrics)
df.to_csv(evaluation_args.output_file)
print(df.mean())
if __name__ == '__main__':
main()
|