File size: 8,984 Bytes
9b9ffd0
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9ffd0
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9ffd0
 
 
 
 
 
 
 
 
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd37ab
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9ffd0
 
 
 
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from transformers.trainer_utils import get_last_checkpoint
from shared import OutputArguments
from typing import Optional
from segment import (
    generate_segments,
    extract_segment,
    SAFETY_TOKENS,
    CustomTokens,
    word_start,
    word_end,
    SegmentationArguments
)
import preprocess
import re
from errors import TranscriptError
from model import get_classifier_vectorizer
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer
)
from dataclasses import dataclass, field
from transformers import HfArgumentParser
from shared import device
import logging


def seconds_to_time(seconds):
    h, remainder = divmod(abs(int(seconds)), 3600)
    m, s = divmod(remainder, 60)
    return f"{'-' if seconds < 0 else ''}{h:02}:{m:02}:{s:02}"


@dataclass
class TrainingOutputArguments:

    model_path: str = field(
        default=None,
        metadata={
            'help': 'Path to pretrained model used for prediction'}
    )

    output_dir: Optional[str] = OutputArguments.__dataclass_fields__[
        'output_dir']

    def __post_init__(self):
        if self.model_path is not None:
            return

        last_checkpoint = get_last_checkpoint(self.output_dir)
        if last_checkpoint is not None:
            self.model_path = last_checkpoint
        else:
            raise Exception(
                'Unable to find model, explicitly set `--model_path`')


@dataclass
class PredictArguments(TrainingOutputArguments):
    video_id: str = field(
        default=None,
        metadata={
            'help': 'Video to predict sponsorship segments for'}
    )


SPONSOR_MATCH_RE = fr'(?<={CustomTokens.START_SPONSOR.value})\s*(.*?)\s*(?={CustomTokens.END_SPONSOR.value}|$)'

MATCH_WINDOW = 25       # Increase for accuracy, but takes longer: O(n^3)
MERGE_TIME_WITHIN = 8   # Merge predictions if they are within x seconds


@dataclass
class ClassifierArguments:
    classifier_dir: Optional[str] = field(
        default='classifiers',
        metadata={
            'help': 'The directory that contains the classifier and vectorizer.'
        }
    )

    classifier_file: Optional[str] = field(
        default='classifier.pickle',
        metadata={
            'help': 'The name of the classifier'
        }
    )

    vectorizer_file: Optional[str] = field(
        default='vectorizer.pickle',
        metadata={
            'help': 'The name of the vectorizer'
        }
    )

    min_probability: float = field(
        default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'})


def filter_predictions(predictions, classifier, vectorizer, classifier_args):
    """Use classifier to filter predictions"""
    if not predictions:
        return predictions

    transformed_segments = vectorizer.transform([
        preprocess.clean_text(' '.join([x['text'] for x in pred['words']]))
        for pred in predictions
    ])
    probabilities = classifier.predict_proba(transformed_segments)

    filtered_predictions = []
    for prediction, probability in zip(predictions, probabilities):
        prediction['probability'] = probability[1]

        if prediction['probability'] >= classifier_args.min_probability:
            filtered_predictions.append(prediction)
        # else:
            # print('removing segment', prediction)

    return filtered_predictions


def predict(video_id, model, tokenizer, segmentation_args, words=None, classifier_args=None):
    # Allow words to be passed in so that we don't have to get the words if we already have them
    if words is None:
        words = preprocess.get_words(video_id)
        if not words:
            raise TranscriptError('Unable to retrieve transcript')

    segments = generate_segments(
        words,
        tokenizer,
        segmentation_args
    )

    predictions = segments_to_prediction_times(segments, model, tokenizer)

    # Add words back to time_ranges
    for prediction in predictions:
        # Stores words in the range
        prediction['words'] = extract_segment(
            words, prediction['start'], prediction['end'])

    if classifier_args is not None:
        classifier, vectorizer = get_classifier_vectorizer(classifier_args)
        predictions = filter_predictions(
            predictions, classifier, vectorizer, classifier_args)

    return predictions


def greedy_match(list, sublist):
    # Return index and length of longest matching sublist

    best_i = -1
    best_j = -1
    best_k = 0

    for i in range(len(list)):  # Start position in main list
        for j in range(len(sublist)):  # Start position in sublist
            for k in range(len(sublist)-j, 0, -1):  # Width of sublist window
                if k > best_k and list[i:i+k] == sublist[j:j+k]:
                    best_i, best_j, best_k = i, j, k
                    break  # Since window size decreases

    return best_i, best_j, best_k


DEFAULT_TOKEN_PREFIX = 'summarize: '


def predict_sponsor_text(text, model, tokenizer):
    """Given a body of text, predict the words which are part of the sponsor"""
    input_ids = tokenizer(
        f'{DEFAULT_TOKEN_PREFIX}{text}', return_tensors='pt', truncation=True).input_ids.to(device())

    # Can't be longer than input length + SAFETY_TOKENS or model input dim
    max_out_len = min(len(input_ids[0]) + SAFETY_TOKENS, model.model_dim)
    outputs = model.generate(input_ids, max_length=max_out_len)

    return tokenizer.decode(outputs[0], skip_special_tokens=True)


def predict_sponsor_matches(text, model, tokenizer):
    sponsorship_text = predict_sponsor_text(text, model, tokenizer)
    if CustomTokens.NO_SPONSOR.value in sponsorship_text:
        return []

    return re.findall(SPONSOR_MATCH_RE, sponsorship_text)


def segments_to_prediction_times(segments, model, tokenizer):
    predicted_time_ranges = []

    # TODO pass to model simultaneously, not in for loop
    # use 2d array for input ids
    for segment in segments:
        cleaned_batch = [preprocess.clean_text(
            word['text']) for word in segment]
        batch_text = ' '.join(cleaned_batch)

        matches = predict_sponsor_matches(batch_text, model, tokenizer)

        for match in matches:
            matched_text = match.split()
            # TODO skip if too short

            i1, j1, k1 = greedy_match(
                cleaned_batch, matched_text[:MATCH_WINDOW])
            i2, j2, k2 = greedy_match(
                cleaned_batch, matched_text[-MATCH_WINDOW:])

            extracted_words = segment[i1:i2+k2]

            if not extracted_words:
                continue

            predicted_time_ranges.append({
                'start': word_start(extracted_words[0]),
                'end': word_end(extracted_words[-1])
            })

    # Necessary to sort matches by start time
    predicted_time_ranges.sort(key=word_start)

    # Merge overlapping predictions and sponsorships that are close together
    # Caused by model having max input size
    last_end_time = -1
    final_predicted_time_ranges = []
    for range in predicted_time_ranges:
        start_time = range['start']
        end_time = range['end']

        if (start_time <= last_end_time <= end_time) or (last_end_time != -1 and start_time - last_end_time <= MERGE_TIME_WITHIN):
            # Ending time of last segment is in this segment, so we extend last prediction range
            final_predicted_time_ranges[-1]['end'] = end_time

        else:  # No overlap, is a new prediction
            final_predicted_time_ranges.append({
                'start': start_time,
                'end': end_time,
            })

        last_end_time = end_time

    return final_predicted_time_ranges


def main():
    # Test on unseen data
    logging.getLogger().setLevel(logging.DEBUG)

    hf_parser = HfArgumentParser((
        PredictArguments,
        SegmentationArguments,
        ClassifierArguments
    ))
    predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()

    if predict_args.video_id is None:
        print('No video ID supplied. Use `--video_id`.')
        return

    model = AutoModelForSeq2SeqLM.from_pretrained(predict_args.model_path)
    model.to(device())

    tokenizer = AutoTokenizer.from_pretrained(predict_args.model_path)

    predict_args.video_id = predict_args.video_id.strip()
    print(
        f'Predicting for https://www.youtube.com/watch?v={predict_args.video_id}')
    predictions = predict(predict_args.video_id, model, tokenizer,
                          segmentation_args, classifier_args=classifier_args)

    for prediction in predictions:
        print(' '.join([w['text'] for w in prediction['words']]))
        print(seconds_to_time(prediction['start']),
              '-->', seconds_to_time(prediction['end']))
        print(prediction['start'], '-->', prediction['end'])
        print(prediction['probability'])
        print()

    print()


if __name__ == '__main__':
    main()