Spaces:
Sleeping
Sleeping
File size: 7,773 Bytes
fada987 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/usr/bin/env python3
"""
Gradio app for QP-RNN interactive demo.
Suitable for deployment on Hugging Face Spaces.
"""
import gradio as gr
import torch
import numpy as np
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
from io import BytesIO
import base64
class MinimalQPRNN(torch.nn.Module):
"""Minimal QP-RNN for demonstration."""
def __init__(self, position_gain=3.0, velocity_gain=1.5, control_cost=10.0):
super().__init__()
self.P = torch.tensor([[control_cost]], dtype=torch.float32)
self.K = torch.tensor([position_gain, velocity_gain], dtype=torch.float32)
def forward(self, state, reference=None):
if reference is None:
reference = torch.zeros_like(state)
error = state - reference
q = torch.sum(self.K * error, dim=-1, keepdim=True)
u_unconstrained = -q / self.P
u = torch.clamp(u_unconstrained, -1.0, 1.0)
return u
def simulate_system(position_gain, velocity_gain, control_cost,
initial_position, initial_velocity,
target_position, simulation_time):
"""Run simulation with given parameters."""
# Create controller
controller = MinimalQPRNN(position_gain, velocity_gain, control_cost)
# Setup
dt = 0.05
T = int(simulation_time / dt)
x0 = torch.tensor([initial_position, initial_velocity])
x_ref = torch.tensor([target_position, 0.0])
# Simulate
states = [x0.numpy()]
controls = []
x = x0.clone()
for t in range(T):
u = controller(x, x_ref)
x_next = torch.zeros_like(x)
x_next[0] = x[0] + x[1] * dt
x_next[1] = x[1] + u.item() * dt
states.append(x_next.numpy())
controls.append(u.item())
x = x_next
return np.array(states), np.array(controls), dt
def create_plots(states, controls, dt):
"""Create visualization plots."""
time = np.arange(len(states)) * dt
time_control = time[:-1]
# Create figure with subplots
fig = plt.figure(figsize=(12, 10))
# Position subplot
ax1 = plt.subplot(3, 2, 1)
ax1.plot(time, states[:, 0], 'b-', linewidth=2)
ax1.axhline(y=states[-1, 0], color='r', linestyle='--', alpha=0.5)
ax1.set_ylabel('Position')
ax1.set_title('Position vs Time')
ax1.grid(True, alpha=0.3)
# Velocity subplot
ax2 = plt.subplot(3, 2, 2)
ax2.plot(time, states[:, 1], 'g-', linewidth=2)
ax2.axhline(y=0, color='r', linestyle='--', alpha=0.5)
ax2.set_ylabel('Velocity')
ax2.set_title('Velocity vs Time')
ax2.grid(True, alpha=0.3)
# Control subplot
ax3 = plt.subplot(3, 2, 3)
ax3.plot(time_control, controls, 'r-', linewidth=2)
ax3.axhline(y=1, color='k', linestyle=':', alpha=0.5)
ax3.axhline(y=-1, color='k', linestyle=':', alpha=0.5)
ax3.set_ylabel('Control Input')
ax3.set_xlabel('Time (s)')
ax3.set_title('Control Input vs Time')
ax3.grid(True, alpha=0.3)
ax3.set_ylim(-1.2, 1.2)
# Phase portrait
ax4 = plt.subplot(3, 2, 4)
ax4.plot(states[:, 0], states[:, 1], 'b-', linewidth=2)
ax4.scatter([states[0, 0]], [states[0, 1]], color='green', s=100, marker='o', label='Start')
ax4.scatter([states[-1, 0]], [states[-1, 1]], color='red', s=100, marker='x', label='End')
ax4.set_xlabel('Position')
ax4.set_ylabel('Velocity')
ax4.set_title('Phase Portrait')
ax4.legend()
ax4.grid(True, alpha=0.3)
# QP visualization
ax5 = plt.subplot(3, 2, 5)
# Show how control saturates
time_saturated = np.sum(np.abs(controls) >= 0.99) / len(controls) * 100
labels = ['Saturated', 'Unsaturated']
sizes = [time_saturated, 100 - time_saturated]
colors = ['red', 'blue']
ax5.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%')
ax5.set_title('Control Saturation')
# Metrics text
ax6 = plt.subplot(3, 2, 6)
ax6.axis('off')
metrics_text = f"""Performance Metrics:
Final Position Error: {abs(states[-1, 0]):.4f}
Final Velocity: {states[-1, 1]:.4f}
Control Effort (L1): {np.sum(np.abs(controls)):.2f}
Control Effort (L2): {np.sqrt(np.sum(controls**2)):.2f}
Settling Time: ~{len(states) * dt:.1f}s
Max Overshoot: {np.max(np.abs(states[:, 0])):.2f}
"""
ax6.text(0.1, 0.5, metrics_text, fontsize=12, verticalalignment='center',
fontfamily='monospace', bbox=dict(boxstyle="round,pad=0.5", facecolor="lightgray"))
plt.suptitle('QP-RNN Control Simulation Results', fontsize=16)
plt.tight_layout()
return fig
def run_qp_rnn_demo(position_gain, velocity_gain, control_cost,
initial_position, initial_velocity,
target_position, simulation_time):
"""Main function for Gradio interface."""
# Run simulation
states, controls, dt = simulate_system(
position_gain, velocity_gain, control_cost,
initial_position, initial_velocity,
target_position, simulation_time
)
# Create plots
fig = create_plots(states, controls, dt)
# Create description
description = f"""
### QP-RNN Control Results
The QP-RNN controller solves the following optimization problem at each time step:
```
min 0.5 * u² * {control_cost} + u * (K @ error)
s.t. -1 ≤ u ≤ 1
```
Where K = [{position_gain}, {velocity_gain}] are the feedback gains.
**Final State:** Position = {states[-1, 0]:.3f}, Velocity = {states[-1, 1]:.3f}
**Key Features:**
- Guaranteed constraint satisfaction (control always in [-1, 1])
- Interpretable structure (quadratic cost + linear feedback)
- Can be trained via RL for complex tasks
"""
return fig, description
# Create Gradio interface
iface = gr.Interface(
fn=run_qp_rnn_demo,
inputs=[
gr.Slider(0.1, 10.0, value=3.0, label="Position Gain (Kp)",
info="Higher values = faster position correction"),
gr.Slider(0.1, 5.0, value=1.5, label="Velocity Gain (Kv)",
info="Higher values = more damping"),
gr.Slider(0.1, 50.0, value=10.0, label="Control Cost",
info="Higher values = less aggressive control"),
gr.Slider(-5.0, 5.0, value=2.0, label="Initial Position"),
gr.Slider(-2.0, 2.0, value=0.0, label="Initial Velocity"),
gr.Slider(-3.0, 3.0, value=0.0, label="Target Position"),
gr.Slider(1.0, 10.0, value=5.0, label="Simulation Time (s)")
],
outputs=[
gr.Plot(label="Simulation Results"),
gr.Markdown(label="Analysis")
],
title="QP-RNN: Quadratic Programming Recurrent Neural Network Demo",
description="""
This interactive demo shows how QP-RNN controllers work for a simple double integrator system.
**What is QP-RNN?**
- Combines Model Predictive Control structure with Deep Reinforcement Learning
- Learns to solve a parameterized Quadratic Program (QP) to generate control actions
- Provides theoretical guarantees (constraint satisfaction, stability verification)
**Try adjusting the parameters** to see how they affect control performance!
Paper: [MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control](https://arxiv.org/abs/2312.05332)
""",
examples=[
[3.0, 1.5, 10.0, 2.0, 0.0, 0.0, 5.0], # Default
[5.0, 2.0, 5.0, 2.0, 0.0, 0.0, 5.0], # Aggressive
[1.0, 0.5, 20.0, 2.0, 0.0, 0.0, 5.0], # Conservative
[3.0, 0.1, 10.0, 2.0, 0.0, 0.0, 5.0], # Underdamped
[3.0, 3.0, 10.0, 2.0, 0.0, 0.0, 5.0], # Overdamped
],
cache_examples=True
)
if __name__ == "__main__":
iface.launch() |