File size: 7,773 Bytes
fada987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3
"""
Gradio app for QP-RNN interactive demo.
Suitable for deployment on Hugging Face Spaces.
"""

import gradio as gr
import torch
import numpy as np
import matplotlib
matplotlib.use('Agg')  # Use non-interactive backend
import matplotlib.pyplot as plt
from io import BytesIO
import base64

class MinimalQPRNN(torch.nn.Module):
    """Minimal QP-RNN for demonstration."""
    
    def __init__(self, position_gain=3.0, velocity_gain=1.5, control_cost=10.0):
        super().__init__()
        self.P = torch.tensor([[control_cost]], dtype=torch.float32)
        self.K = torch.tensor([position_gain, velocity_gain], dtype=torch.float32)
        
    def forward(self, state, reference=None):
        if reference is None:
            reference = torch.zeros_like(state)
        error = state - reference
        q = torch.sum(self.K * error, dim=-1, keepdim=True)
        u_unconstrained = -q / self.P
        u = torch.clamp(u_unconstrained, -1.0, 1.0)
        return u

def simulate_system(position_gain, velocity_gain, control_cost, 
                   initial_position, initial_velocity, 
                   target_position, simulation_time):
    """Run simulation with given parameters."""
    
    # Create controller
    controller = MinimalQPRNN(position_gain, velocity_gain, control_cost)
    
    # Setup
    dt = 0.05
    T = int(simulation_time / dt)
    x0 = torch.tensor([initial_position, initial_velocity])
    x_ref = torch.tensor([target_position, 0.0])
    
    # Simulate
    states = [x0.numpy()]
    controls = []
    x = x0.clone()
    
    for t in range(T):
        u = controller(x, x_ref)
        x_next = torch.zeros_like(x)
        x_next[0] = x[0] + x[1] * dt
        x_next[1] = x[1] + u.item() * dt
        states.append(x_next.numpy())
        controls.append(u.item())
        x = x_next
    
    return np.array(states), np.array(controls), dt

def create_plots(states, controls, dt):
    """Create visualization plots."""
    time = np.arange(len(states)) * dt
    time_control = time[:-1]
    
    # Create figure with subplots
    fig = plt.figure(figsize=(12, 10))
    
    # Position subplot
    ax1 = plt.subplot(3, 2, 1)
    ax1.plot(time, states[:, 0], 'b-', linewidth=2)
    ax1.axhline(y=states[-1, 0], color='r', linestyle='--', alpha=0.5)
    ax1.set_ylabel('Position')
    ax1.set_title('Position vs Time')
    ax1.grid(True, alpha=0.3)
    
    # Velocity subplot
    ax2 = plt.subplot(3, 2, 2)
    ax2.plot(time, states[:, 1], 'g-', linewidth=2)
    ax2.axhline(y=0, color='r', linestyle='--', alpha=0.5)
    ax2.set_ylabel('Velocity')
    ax2.set_title('Velocity vs Time')
    ax2.grid(True, alpha=0.3)
    
    # Control subplot
    ax3 = plt.subplot(3, 2, 3)
    ax3.plot(time_control, controls, 'r-', linewidth=2)
    ax3.axhline(y=1, color='k', linestyle=':', alpha=0.5)
    ax3.axhline(y=-1, color='k', linestyle=':', alpha=0.5)
    ax3.set_ylabel('Control Input')
    ax3.set_xlabel('Time (s)')
    ax3.set_title('Control Input vs Time')
    ax3.grid(True, alpha=0.3)
    ax3.set_ylim(-1.2, 1.2)
    
    # Phase portrait
    ax4 = plt.subplot(3, 2, 4)
    ax4.plot(states[:, 0], states[:, 1], 'b-', linewidth=2)
    ax4.scatter([states[0, 0]], [states[0, 1]], color='green', s=100, marker='o', label='Start')
    ax4.scatter([states[-1, 0]], [states[-1, 1]], color='red', s=100, marker='x', label='End')
    ax4.set_xlabel('Position')
    ax4.set_ylabel('Velocity')
    ax4.set_title('Phase Portrait')
    ax4.legend()
    ax4.grid(True, alpha=0.3)
    
    # QP visualization
    ax5 = plt.subplot(3, 2, 5)
    # Show how control saturates
    time_saturated = np.sum(np.abs(controls) >= 0.99) / len(controls) * 100
    labels = ['Saturated', 'Unsaturated']
    sizes = [time_saturated, 100 - time_saturated]
    colors = ['red', 'blue']
    ax5.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%')
    ax5.set_title('Control Saturation')
    
    # Metrics text
    ax6 = plt.subplot(3, 2, 6)
    ax6.axis('off')
    metrics_text = f"""Performance Metrics:
    
Final Position Error: {abs(states[-1, 0]):.4f}
Final Velocity: {states[-1, 1]:.4f}
Control Effort (L1): {np.sum(np.abs(controls)):.2f}
Control Effort (L2): {np.sqrt(np.sum(controls**2)):.2f}
Settling Time: ~{len(states) * dt:.1f}s
Max Overshoot: {np.max(np.abs(states[:, 0])):.2f}
"""
    ax6.text(0.1, 0.5, metrics_text, fontsize=12, verticalalignment='center',
             fontfamily='monospace', bbox=dict(boxstyle="round,pad=0.5", facecolor="lightgray"))
    
    plt.suptitle('QP-RNN Control Simulation Results', fontsize=16)
    plt.tight_layout()
    
    return fig

def run_qp_rnn_demo(position_gain, velocity_gain, control_cost,
                    initial_position, initial_velocity, 
                    target_position, simulation_time):
    """Main function for Gradio interface."""
    
    # Run simulation
    states, controls, dt = simulate_system(
        position_gain, velocity_gain, control_cost,
        initial_position, initial_velocity,
        target_position, simulation_time
    )
    
    # Create plots
    fig = create_plots(states, controls, dt)
    
    # Create description
    description = f"""
    ### QP-RNN Control Results
    
    The QP-RNN controller solves the following optimization problem at each time step:
    
    ```
    min   0.5 * u² * {control_cost} + u * (K @ error)
    s.t.  -1 ≤ u ≤ 1
    ```
    
    Where K = [{position_gain}, {velocity_gain}] are the feedback gains.
    
    **Final State:** Position = {states[-1, 0]:.3f}, Velocity = {states[-1, 1]:.3f}
    
    **Key Features:**
    - Guaranteed constraint satisfaction (control always in [-1, 1])
    - Interpretable structure (quadratic cost + linear feedback)
    - Can be trained via RL for complex tasks
    """
    
    return fig, description

# Create Gradio interface
iface = gr.Interface(
    fn=run_qp_rnn_demo,
    inputs=[
        gr.Slider(0.1, 10.0, value=3.0, label="Position Gain (Kp)", 
                  info="Higher values = faster position correction"),
        gr.Slider(0.1, 5.0, value=1.5, label="Velocity Gain (Kv)",
                  info="Higher values = more damping"),
        gr.Slider(0.1, 50.0, value=10.0, label="Control Cost",
                  info="Higher values = less aggressive control"),
        gr.Slider(-5.0, 5.0, value=2.0, label="Initial Position"),
        gr.Slider(-2.0, 2.0, value=0.0, label="Initial Velocity"),
        gr.Slider(-3.0, 3.0, value=0.0, label="Target Position"),
        gr.Slider(1.0, 10.0, value=5.0, label="Simulation Time (s)")
    ],
    outputs=[
        gr.Plot(label="Simulation Results"),
        gr.Markdown(label="Analysis")
    ],
    title="QP-RNN: Quadratic Programming Recurrent Neural Network Demo",
    description="""
    This interactive demo shows how QP-RNN controllers work for a simple double integrator system.
    
    **What is QP-RNN?**
    - Combines Model Predictive Control structure with Deep Reinforcement Learning
    - Learns to solve a parameterized Quadratic Program (QP) to generate control actions
    - Provides theoretical guarantees (constraint satisfaction, stability verification)
    
    **Try adjusting the parameters** to see how they affect control performance!
    
    Paper: [MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control](https://arxiv.org/abs/2312.05332)
    """,
    examples=[
        [3.0, 1.5, 10.0, 2.0, 0.0, 0.0, 5.0],  # Default
        [5.0, 2.0, 5.0, 2.0, 0.0, 0.0, 5.0],   # Aggressive
        [1.0, 0.5, 20.0, 2.0, 0.0, 0.0, 5.0],  # Conservative
        [3.0, 0.1, 10.0, 2.0, 0.0, 0.0, 5.0],  # Underdamped
        [3.0, 3.0, 10.0, 2.0, 0.0, 0.0, 5.0],  # Overdamped
    ],
    cache_examples=True
)

if __name__ == "__main__":
    iface.launch()