File size: 3,737 Bytes
0eb5c98
 
2de0e2a
6b388e7
86fa70d
0eb5c98
6b388e7
 
 
 
 
0eb5c98
6b388e7
0eb5c98
6b388e7
 
 
0eb5c98
6b388e7
 
0eb5c98
 
6b388e7
0eb5c98
 
 
 
 
6b388e7
0eb5c98
74ee2e4
 
 
 
 
 
 
 
20ac9c7
6b388e7
 
74ee2e4
 
6b388e7
 
 
 
 
 
 
 
 
 
 
 
 
0eb5c98
6b388e7
 
0eb5c98
6b388e7
 
 
 
 
 
 
 
 
 
 
0eb5c98
 
 
 
6b388e7
 
 
 
 
 
 
 
 
 
 
 
 
0eb5c98
 
6b388e7
 
 
0eb5c98
 
6b388e7
 
0eb5c98
6b388e7
 
0eb5c98
6b388e7
 
0eb5c98
6b388e7
 
 
0eb5c98
 
 
6b388e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import streamlit as st
from dotenv import load_dotenv
from pypdf import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks
def get_embeddings():
    model_name = "sentence-transformers/all-mpnet-base-v2"
    model_kwargs = {'device': 'cpu'}
    encode_kwargs = {'normalize_embeddings': False}
    
    return HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs)

def get_vectorstore(text_chunks):
    embeddings = get_embeddings()
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                raw_text = get_pdf_text(pdf_docs)

                # get the text chunks
                text_chunks = get_text_chunks(raw_text)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()