Spaces:
Running
Running
File size: 32,366 Bytes
2ba4412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import cv2
import torch
import numpy as np
import json
import copy
import torch
import random
import argparse
import shutil
import tempfile
import subprocess
import numpy as np
import math
import torch.multiprocessing as mp
import torch.distributed as dist
import pickle
import logging
from io import BytesIO
import oss2 as oss
import os.path as osp
import sys
import dwpose.util as util
from dwpose.wholebody import Wholebody
def smoothing_factor(t_e, cutoff):
r = 2 * math.pi * cutoff * t_e
return r / (r + 1)
def exponential_smoothing(a, x, x_prev):
return a * x + (1 - a) * x_prev
class OneEuroFilter:
def __init__(self, t0, x0, dx0=0.0, min_cutoff=1.0, beta=0.0,
d_cutoff=1.0):
"""Initialize the one euro filter."""
# The parameters.
self.min_cutoff = float(min_cutoff)
self.beta = float(beta)
self.d_cutoff = float(d_cutoff)
# Previous values.
self.x_prev = x0
self.dx_prev = float(dx0)
self.t_prev = float(t0)
def __call__(self, t, x):
"""Compute the filtered signal."""
t_e = t - self.t_prev
# The filtered derivative of the signal.
a_d = smoothing_factor(t_e, self.d_cutoff)
dx = (x - self.x_prev) / t_e
dx_hat = exponential_smoothing(a_d, dx, self.dx_prev)
# The filtered signal.
cutoff = self.min_cutoff + self.beta * abs(dx_hat)
a = smoothing_factor(t_e, cutoff)
x_hat = exponential_smoothing(a, x, self.x_prev)
# Memorize the previous values.
self.x_prev = x_hat
self.dx_prev = dx_hat
self.t_prev = t
return x_hat
def get_logger(name="essmc2"):
logger = logging.getLogger(name)
logger.propagate = False
if len(logger.handlers) == 0:
std_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
std_handler.setFormatter(formatter)
std_handler.setLevel(logging.INFO)
logger.setLevel(logging.INFO)
logger.addHandler(std_handler)
return logger
class DWposeDetector:
def __init__(self):
self.pose_estimation = Wholebody()
def __call__(self, oriImg):
oriImg = oriImg.copy()
H, W, C = oriImg.shape
with torch.no_grad():
candidate, subset = self.pose_estimation(oriImg)
candidate = candidate[0][np.newaxis, :, :]
subset = subset[0][np.newaxis, :]
nums, keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:,:18].copy()
body = body.reshape(nums*18, locs)
score = subset[:,:18].copy()
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > 0.3:
score[i][j] = int(18*i+j)
else:
score[i][j] = -1
un_visible = subset<0.3
candidate[un_visible] = -1
bodyfoot_score = subset[:,:24].copy()
for i in range(len(bodyfoot_score)):
for j in range(len(bodyfoot_score[i])):
if bodyfoot_score[i][j] > 0.3:
bodyfoot_score[i][j] = int(18*i+j)
else:
bodyfoot_score[i][j] = -1
if -1 not in bodyfoot_score[:,18] and -1 not in bodyfoot_score[:,19]:
bodyfoot_score[:,18] = np.array([18.])
else:
bodyfoot_score[:,18] = np.array([-1.])
if -1 not in bodyfoot_score[:,21] and -1 not in bodyfoot_score[:,22]:
bodyfoot_score[:,19] = np.array([19.])
else:
bodyfoot_score[:,19] = np.array([-1.])
bodyfoot_score = bodyfoot_score[:, :20]
bodyfoot = candidate[:,:24].copy()
for i in range(nums):
if -1 not in bodyfoot[i][18] and -1 not in bodyfoot[i][19]:
bodyfoot[i][18] = (bodyfoot[i][18]+bodyfoot[i][19])/2
else:
bodyfoot[i][18] = np.array([-1., -1.])
if -1 not in bodyfoot[i][21] and -1 not in bodyfoot[i][22]:
bodyfoot[i][19] = (bodyfoot[i][21]+bodyfoot[i][22])/2
else:
bodyfoot[i][19] = np.array([-1., -1.])
bodyfoot = bodyfoot[:,:20,:]
bodyfoot = bodyfoot.reshape(nums*20, locs)
foot = candidate[:,18:24]
faces = candidate[:,24:92]
hands = candidate[:,92:113]
hands = np.vstack([hands, candidate[:,113:]])
# bodies = dict(candidate=body, subset=score)
bodies = dict(candidate=bodyfoot, subset=bodyfoot_score)
pose = dict(bodies=bodies, hands=hands, faces=faces)
# return draw_pose(pose, H, W)
return pose
def draw_pose(pose, H, W):
bodies = pose['bodies']
faces = pose['faces']
hands = pose['hands']
candidate = bodies['candidate']
subset = bodies['subset']
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
canvas = util.draw_body_and_foot(canvas, candidate, subset)
canvas = util.draw_handpose(canvas, hands)
canvas_without_face = copy.deepcopy(canvas)
canvas = util.draw_facepose(canvas, faces)
return canvas_without_face, canvas
def dw_func(_id, frame, dwpose_model, dwpose_woface_folder='tmp_dwpose_wo_face', dwpose_withface_folder='tmp_dwpose_with_face'):
# frame = cv2.imread(frame_name, cv2.IMREAD_COLOR)
pose = dwpose_model(frame)
return pose
def mp_main(args):
if args.source_video_paths.endswith('mp4'):
video_paths = [args.source_video_paths]
else:
# video list
video_paths = [os.path.join(args.source_video_paths, frame_name) for frame_name in os.listdir(args.source_video_paths)]
logger.info("There are {} videos for extracting poses".format(len(video_paths)))
logger.info('LOAD: DW Pose Model')
dwpose_model = DWposeDetector()
results_vis = []
for i, file_path in enumerate(video_paths):
logger.info(f"{i}/{len(video_paths)}, {file_path}")
videoCapture = cv2.VideoCapture(file_path)
while videoCapture.isOpened():
# get a frame
ret, frame = videoCapture.read()
if ret:
pose = dw_func(i, frame, dwpose_model)
results_vis.append(pose)
else:
break
logger.info(f'all frames in {file_path} have been read.')
videoCapture.release()
# added
# results_vis = results_vis[8:]
print(len(results_vis))
ref_name = args.ref_name
save_motion = args.saved_pose_dir
os.system(f'rm -rf {save_motion}');
os.makedirs(save_motion, exist_ok=True)
save_warp = args.saved_pose_dir
# os.makedirs(save_warp, exist_ok=True)
ref_frame = cv2.imread(ref_name, cv2.IMREAD_COLOR)
pose_ref = dw_func(i, ref_frame, dwpose_model)
bodies = results_vis[0]['bodies']
faces = results_vis[0]['faces']
hands = results_vis[0]['hands']
candidate = bodies['candidate']
ref_bodies = pose_ref['bodies']
ref_faces = pose_ref['faces']
ref_hands = pose_ref['hands']
ref_candidate = ref_bodies['candidate']
ref_2_x = ref_candidate[2][0]
ref_2_y = ref_candidate[2][1]
ref_5_x = ref_candidate[5][0]
ref_5_y = ref_candidate[5][1]
ref_8_x = ref_candidate[8][0]
ref_8_y = ref_candidate[8][1]
ref_11_x = ref_candidate[11][0]
ref_11_y = ref_candidate[11][1]
ref_center1 = 0.5*(ref_candidate[2]+ref_candidate[5])
ref_center2 = 0.5*(ref_candidate[8]+ref_candidate[11])
zero_2_x = candidate[2][0]
zero_2_y = candidate[2][1]
zero_5_x = candidate[5][0]
zero_5_y = candidate[5][1]
zero_8_x = candidate[8][0]
zero_8_y = candidate[8][1]
zero_11_x = candidate[11][0]
zero_11_y = candidate[11][1]
zero_center1 = 0.5*(candidate[2]+candidate[5])
zero_center2 = 0.5*(candidate[8]+candidate[11])
x_ratio = (ref_5_x-ref_2_x)/(zero_5_x-zero_2_x)
y_ratio = (ref_center2[1]-ref_center1[1])/(zero_center2[1]-zero_center1[1])
results_vis[0]['bodies']['candidate'][:,0] *= x_ratio
results_vis[0]['bodies']['candidate'][:,1] *= y_ratio
results_vis[0]['faces'][:,:,0] *= x_ratio
results_vis[0]['faces'][:,:,1] *= y_ratio
results_vis[0]['hands'][:,:,0] *= x_ratio
results_vis[0]['hands'][:,:,1] *= y_ratio
########neck########
l_neck_ref = ((ref_candidate[0][0] - ref_candidate[1][0]) ** 2 + (ref_candidate[0][1] - ref_candidate[1][1]) ** 2) ** 0.5
l_neck_0 = ((candidate[0][0] - candidate[1][0]) ** 2 + (candidate[0][1] - candidate[1][1]) ** 2) ** 0.5
neck_ratio = l_neck_ref / l_neck_0
x_offset_neck = (candidate[1][0]-candidate[0][0])*(1.-neck_ratio)
y_offset_neck = (candidate[1][1]-candidate[0][1])*(1.-neck_ratio)
results_vis[0]['bodies']['candidate'][0,0] += x_offset_neck
results_vis[0]['bodies']['candidate'][0,1] += y_offset_neck
results_vis[0]['bodies']['candidate'][14,0] += x_offset_neck
results_vis[0]['bodies']['candidate'][14,1] += y_offset_neck
results_vis[0]['bodies']['candidate'][15,0] += x_offset_neck
results_vis[0]['bodies']['candidate'][15,1] += y_offset_neck
results_vis[0]['bodies']['candidate'][16,0] += x_offset_neck
results_vis[0]['bodies']['candidate'][16,1] += y_offset_neck
results_vis[0]['bodies']['candidate'][17,0] += x_offset_neck
results_vis[0]['bodies']['candidate'][17,1] += y_offset_neck
########shoulder2########
l_shoulder2_ref = ((ref_candidate[2][0] - ref_candidate[1][0]) ** 2 + (ref_candidate[2][1] - ref_candidate[1][1]) ** 2) ** 0.5
l_shoulder2_0 = ((candidate[2][0] - candidate[1][0]) ** 2 + (candidate[2][1] - candidate[1][1]) ** 2) ** 0.5
shoulder2_ratio = l_shoulder2_ref / l_shoulder2_0
x_offset_shoulder2 = (candidate[1][0]-candidate[2][0])*(1.-shoulder2_ratio)
y_offset_shoulder2 = (candidate[1][1]-candidate[2][1])*(1.-shoulder2_ratio)
results_vis[0]['bodies']['candidate'][2,0] += x_offset_shoulder2
results_vis[0]['bodies']['candidate'][2,1] += y_offset_shoulder2
results_vis[0]['bodies']['candidate'][3,0] += x_offset_shoulder2
results_vis[0]['bodies']['candidate'][3,1] += y_offset_shoulder2
results_vis[0]['bodies']['candidate'][4,0] += x_offset_shoulder2
results_vis[0]['bodies']['candidate'][4,1] += y_offset_shoulder2
results_vis[0]['hands'][1,:,0] += x_offset_shoulder2
results_vis[0]['hands'][1,:,1] += y_offset_shoulder2
########shoulder5########
l_shoulder5_ref = ((ref_candidate[5][0] - ref_candidate[1][0]) ** 2 + (ref_candidate[5][1] - ref_candidate[1][1]) ** 2) ** 0.5
l_shoulder5_0 = ((candidate[5][0] - candidate[1][0]) ** 2 + (candidate[5][1] - candidate[1][1]) ** 2) ** 0.5
shoulder5_ratio = l_shoulder5_ref / l_shoulder5_0
x_offset_shoulder5 = (candidate[1][0]-candidate[5][0])*(1.-shoulder5_ratio)
y_offset_shoulder5 = (candidate[1][1]-candidate[5][1])*(1.-shoulder5_ratio)
results_vis[0]['bodies']['candidate'][5,0] += x_offset_shoulder5
results_vis[0]['bodies']['candidate'][5,1] += y_offset_shoulder5
results_vis[0]['bodies']['candidate'][6,0] += x_offset_shoulder5
results_vis[0]['bodies']['candidate'][6,1] += y_offset_shoulder5
results_vis[0]['bodies']['candidate'][7,0] += x_offset_shoulder5
results_vis[0]['bodies']['candidate'][7,1] += y_offset_shoulder5
results_vis[0]['hands'][0,:,0] += x_offset_shoulder5
results_vis[0]['hands'][0,:,1] += y_offset_shoulder5
########arm3########
l_arm3_ref = ((ref_candidate[3][0] - ref_candidate[2][0]) ** 2 + (ref_candidate[3][1] - ref_candidate[2][1]) ** 2) ** 0.5
l_arm3_0 = ((candidate[3][0] - candidate[2][0]) ** 2 + (candidate[3][1] - candidate[2][1]) ** 2) ** 0.5
arm3_ratio = l_arm3_ref / l_arm3_0
x_offset_arm3 = (candidate[2][0]-candidate[3][0])*(1.-arm3_ratio)
y_offset_arm3 = (candidate[2][1]-candidate[3][1])*(1.-arm3_ratio)
results_vis[0]['bodies']['candidate'][3,0] += x_offset_arm3
results_vis[0]['bodies']['candidate'][3,1] += y_offset_arm3
results_vis[0]['bodies']['candidate'][4,0] += x_offset_arm3
results_vis[0]['bodies']['candidate'][4,1] += y_offset_arm3
results_vis[0]['hands'][1,:,0] += x_offset_arm3
results_vis[0]['hands'][1,:,1] += y_offset_arm3
########arm4########
l_arm4_ref = ((ref_candidate[4][0] - ref_candidate[3][0]) ** 2 + (ref_candidate[4][1] - ref_candidate[3][1]) ** 2) ** 0.5
l_arm4_0 = ((candidate[4][0] - candidate[3][0]) ** 2 + (candidate[4][1] - candidate[3][1]) ** 2) ** 0.5
arm4_ratio = l_arm4_ref / l_arm4_0
x_offset_arm4 = (candidate[3][0]-candidate[4][0])*(1.-arm4_ratio)
y_offset_arm4 = (candidate[3][1]-candidate[4][1])*(1.-arm4_ratio)
results_vis[0]['bodies']['candidate'][4,0] += x_offset_arm4
results_vis[0]['bodies']['candidate'][4,1] += y_offset_arm4
results_vis[0]['hands'][1,:,0] += x_offset_arm4
results_vis[0]['hands'][1,:,1] += y_offset_arm4
########arm6########
l_arm6_ref = ((ref_candidate[6][0] - ref_candidate[5][0]) ** 2 + (ref_candidate[6][1] - ref_candidate[5][1]) ** 2) ** 0.5
l_arm6_0 = ((candidate[6][0] - candidate[5][0]) ** 2 + (candidate[6][1] - candidate[5][1]) ** 2) ** 0.5
arm6_ratio = l_arm6_ref / l_arm6_0
x_offset_arm6 = (candidate[5][0]-candidate[6][0])*(1.-arm6_ratio)
y_offset_arm6 = (candidate[5][1]-candidate[6][1])*(1.-arm6_ratio)
results_vis[0]['bodies']['candidate'][6,0] += x_offset_arm6
results_vis[0]['bodies']['candidate'][6,1] += y_offset_arm6
results_vis[0]['bodies']['candidate'][7,0] += x_offset_arm6
results_vis[0]['bodies']['candidate'][7,1] += y_offset_arm6
results_vis[0]['hands'][0,:,0] += x_offset_arm6
results_vis[0]['hands'][0,:,1] += y_offset_arm6
########arm7########
l_arm7_ref = ((ref_candidate[7][0] - ref_candidate[6][0]) ** 2 + (ref_candidate[7][1] - ref_candidate[6][1]) ** 2) ** 0.5
l_arm7_0 = ((candidate[7][0] - candidate[6][0]) ** 2 + (candidate[7][1] - candidate[6][1]) ** 2) ** 0.5
arm7_ratio = l_arm7_ref / l_arm7_0
x_offset_arm7 = (candidate[6][0]-candidate[7][0])*(1.-arm7_ratio)
y_offset_arm7 = (candidate[6][1]-candidate[7][1])*(1.-arm7_ratio)
results_vis[0]['bodies']['candidate'][7,0] += x_offset_arm7
results_vis[0]['bodies']['candidate'][7,1] += y_offset_arm7
results_vis[0]['hands'][0,:,0] += x_offset_arm7
results_vis[0]['hands'][0,:,1] += y_offset_arm7
########head14########
l_head14_ref = ((ref_candidate[14][0] - ref_candidate[0][0]) ** 2 + (ref_candidate[14][1] - ref_candidate[0][1]) ** 2) ** 0.5
l_head14_0 = ((candidate[14][0] - candidate[0][0]) ** 2 + (candidate[14][1] - candidate[0][1]) ** 2) ** 0.5
head14_ratio = l_head14_ref / l_head14_0
x_offset_head14 = (candidate[0][0]-candidate[14][0])*(1.-head14_ratio)
y_offset_head14 = (candidate[0][1]-candidate[14][1])*(1.-head14_ratio)
results_vis[0]['bodies']['candidate'][14,0] += x_offset_head14
results_vis[0]['bodies']['candidate'][14,1] += y_offset_head14
results_vis[0]['bodies']['candidate'][16,0] += x_offset_head14
results_vis[0]['bodies']['candidate'][16,1] += y_offset_head14
########head15########
l_head15_ref = ((ref_candidate[15][0] - ref_candidate[0][0]) ** 2 + (ref_candidate[15][1] - ref_candidate[0][1]) ** 2) ** 0.5
l_head15_0 = ((candidate[15][0] - candidate[0][0]) ** 2 + (candidate[15][1] - candidate[0][1]) ** 2) ** 0.5
head15_ratio = l_head15_ref / l_head15_0
x_offset_head15 = (candidate[0][0]-candidate[15][0])*(1.-head15_ratio)
y_offset_head15 = (candidate[0][1]-candidate[15][1])*(1.-head15_ratio)
results_vis[0]['bodies']['candidate'][15,0] += x_offset_head15
results_vis[0]['bodies']['candidate'][15,1] += y_offset_head15
results_vis[0]['bodies']['candidate'][17,0] += x_offset_head15
results_vis[0]['bodies']['candidate'][17,1] += y_offset_head15
########head16########
l_head16_ref = ((ref_candidate[16][0] - ref_candidate[14][0]) ** 2 + (ref_candidate[16][1] - ref_candidate[14][1]) ** 2) ** 0.5
l_head16_0 = ((candidate[16][0] - candidate[14][0]) ** 2 + (candidate[16][1] - candidate[14][1]) ** 2) ** 0.5
head16_ratio = l_head16_ref / l_head16_0
x_offset_head16 = (candidate[14][0]-candidate[16][0])*(1.-head16_ratio)
y_offset_head16 = (candidate[14][1]-candidate[16][1])*(1.-head16_ratio)
results_vis[0]['bodies']['candidate'][16,0] += x_offset_head16
results_vis[0]['bodies']['candidate'][16,1] += y_offset_head16
########head17########
l_head17_ref = ((ref_candidate[17][0] - ref_candidate[15][0]) ** 2 + (ref_candidate[17][1] - ref_candidate[15][1]) ** 2) ** 0.5
l_head17_0 = ((candidate[17][0] - candidate[15][0]) ** 2 + (candidate[17][1] - candidate[15][1]) ** 2) ** 0.5
head17_ratio = l_head17_ref / l_head17_0
x_offset_head17 = (candidate[15][0]-candidate[17][0])*(1.-head17_ratio)
y_offset_head17 = (candidate[15][1]-candidate[17][1])*(1.-head17_ratio)
results_vis[0]['bodies']['candidate'][17,0] += x_offset_head17
results_vis[0]['bodies']['candidate'][17,1] += y_offset_head17
########MovingAverage########
########left leg########
l_ll1_ref = ((ref_candidate[8][0] - ref_candidate[9][0]) ** 2 + (ref_candidate[8][1] - ref_candidate[9][1]) ** 2) ** 0.5
l_ll1_0 = ((candidate[8][0] - candidate[9][0]) ** 2 + (candidate[8][1] - candidate[9][1]) ** 2) ** 0.5
ll1_ratio = l_ll1_ref / l_ll1_0
x_offset_ll1 = (candidate[9][0]-candidate[8][0])*(ll1_ratio-1.)
y_offset_ll1 = (candidate[9][1]-candidate[8][1])*(ll1_ratio-1.)
results_vis[0]['bodies']['candidate'][9,0] += x_offset_ll1
results_vis[0]['bodies']['candidate'][9,1] += y_offset_ll1
results_vis[0]['bodies']['candidate'][10,0] += x_offset_ll1
results_vis[0]['bodies']['candidate'][10,1] += y_offset_ll1
results_vis[0]['bodies']['candidate'][19,0] += x_offset_ll1
results_vis[0]['bodies']['candidate'][19,1] += y_offset_ll1
l_ll2_ref = ((ref_candidate[9][0] - ref_candidate[10][0]) ** 2 + (ref_candidate[9][1] - ref_candidate[10][1]) ** 2) ** 0.5
l_ll2_0 = ((candidate[9][0] - candidate[10][0]) ** 2 + (candidate[9][1] - candidate[10][1]) ** 2) ** 0.5
ll2_ratio = l_ll2_ref / l_ll2_0
x_offset_ll2 = (candidate[10][0]-candidate[9][0])*(ll2_ratio-1.)
y_offset_ll2 = (candidate[10][1]-candidate[9][1])*(ll2_ratio-1.)
results_vis[0]['bodies']['candidate'][10,0] += x_offset_ll2
results_vis[0]['bodies']['candidate'][10,1] += y_offset_ll2
results_vis[0]['bodies']['candidate'][19,0] += x_offset_ll2
results_vis[0]['bodies']['candidate'][19,1] += y_offset_ll2
########right leg########
l_rl1_ref = ((ref_candidate[11][0] - ref_candidate[12][0]) ** 2 + (ref_candidate[11][1] - ref_candidate[12][1]) ** 2) ** 0.5
l_rl1_0 = ((candidate[11][0] - candidate[12][0]) ** 2 + (candidate[11][1] - candidate[12][1]) ** 2) ** 0.5
rl1_ratio = l_rl1_ref / l_rl1_0
x_offset_rl1 = (candidate[12][0]-candidate[11][0])*(rl1_ratio-1.)
y_offset_rl1 = (candidate[12][1]-candidate[11][1])*(rl1_ratio-1.)
results_vis[0]['bodies']['candidate'][12,0] += x_offset_rl1
results_vis[0]['bodies']['candidate'][12,1] += y_offset_rl1
results_vis[0]['bodies']['candidate'][13,0] += x_offset_rl1
results_vis[0]['bodies']['candidate'][13,1] += y_offset_rl1
results_vis[0]['bodies']['candidate'][18,0] += x_offset_rl1
results_vis[0]['bodies']['candidate'][18,1] += y_offset_rl1
l_rl2_ref = ((ref_candidate[12][0] - ref_candidate[13][0]) ** 2 + (ref_candidate[12][1] - ref_candidate[13][1]) ** 2) ** 0.5
l_rl2_0 = ((candidate[12][0] - candidate[13][0]) ** 2 + (candidate[12][1] - candidate[13][1]) ** 2) ** 0.5
rl2_ratio = l_rl2_ref / l_rl2_0
x_offset_rl2 = (candidate[13][0]-candidate[12][0])*(rl2_ratio-1.)
y_offset_rl2 = (candidate[13][1]-candidate[12][1])*(rl2_ratio-1.)
results_vis[0]['bodies']['candidate'][13,0] += x_offset_rl2
results_vis[0]['bodies']['candidate'][13,1] += y_offset_rl2
results_vis[0]['bodies']['candidate'][18,0] += x_offset_rl2
results_vis[0]['bodies']['candidate'][18,1] += y_offset_rl2
offset = ref_candidate[1] - results_vis[0]['bodies']['candidate'][1]
results_vis[0]['bodies']['candidate'] += offset[np.newaxis, :]
results_vis[0]['faces'] += offset[np.newaxis, np.newaxis, :]
results_vis[0]['hands'] += offset[np.newaxis, np.newaxis, :]
for i in range(1, len(results_vis)):
results_vis[i]['bodies']['candidate'][:,0] *= x_ratio
results_vis[i]['bodies']['candidate'][:,1] *= y_ratio
results_vis[i]['faces'][:,:,0] *= x_ratio
results_vis[i]['faces'][:,:,1] *= y_ratio
results_vis[i]['hands'][:,:,0] *= x_ratio
results_vis[i]['hands'][:,:,1] *= y_ratio
########neck########
x_offset_neck = (results_vis[i]['bodies']['candidate'][1][0]-results_vis[i]['bodies']['candidate'][0][0])*(1.-neck_ratio)
y_offset_neck = (results_vis[i]['bodies']['candidate'][1][1]-results_vis[i]['bodies']['candidate'][0][1])*(1.-neck_ratio)
results_vis[i]['bodies']['candidate'][0,0] += x_offset_neck
results_vis[i]['bodies']['candidate'][0,1] += y_offset_neck
results_vis[i]['bodies']['candidate'][14,0] += x_offset_neck
results_vis[i]['bodies']['candidate'][14,1] += y_offset_neck
results_vis[i]['bodies']['candidate'][15,0] += x_offset_neck
results_vis[i]['bodies']['candidate'][15,1] += y_offset_neck
results_vis[i]['bodies']['candidate'][16,0] += x_offset_neck
results_vis[i]['bodies']['candidate'][16,1] += y_offset_neck
results_vis[i]['bodies']['candidate'][17,0] += x_offset_neck
results_vis[i]['bodies']['candidate'][17,1] += y_offset_neck
########shoulder2########
x_offset_shoulder2 = (results_vis[i]['bodies']['candidate'][1][0]-results_vis[i]['bodies']['candidate'][2][0])*(1.-shoulder2_ratio)
y_offset_shoulder2 = (results_vis[i]['bodies']['candidate'][1][1]-results_vis[i]['bodies']['candidate'][2][1])*(1.-shoulder2_ratio)
results_vis[i]['bodies']['candidate'][2,0] += x_offset_shoulder2
results_vis[i]['bodies']['candidate'][2,1] += y_offset_shoulder2
results_vis[i]['bodies']['candidate'][3,0] += x_offset_shoulder2
results_vis[i]['bodies']['candidate'][3,1] += y_offset_shoulder2
results_vis[i]['bodies']['candidate'][4,0] += x_offset_shoulder2
results_vis[i]['bodies']['candidate'][4,1] += y_offset_shoulder2
results_vis[i]['hands'][1,:,0] += x_offset_shoulder2
results_vis[i]['hands'][1,:,1] += y_offset_shoulder2
########shoulder5########
x_offset_shoulder5 = (results_vis[i]['bodies']['candidate'][1][0]-results_vis[i]['bodies']['candidate'][5][0])*(1.-shoulder5_ratio)
y_offset_shoulder5 = (results_vis[i]['bodies']['candidate'][1][1]-results_vis[i]['bodies']['candidate'][5][1])*(1.-shoulder5_ratio)
results_vis[i]['bodies']['candidate'][5,0] += x_offset_shoulder5
results_vis[i]['bodies']['candidate'][5,1] += y_offset_shoulder5
results_vis[i]['bodies']['candidate'][6,0] += x_offset_shoulder5
results_vis[i]['bodies']['candidate'][6,1] += y_offset_shoulder5
results_vis[i]['bodies']['candidate'][7,0] += x_offset_shoulder5
results_vis[i]['bodies']['candidate'][7,1] += y_offset_shoulder5
results_vis[i]['hands'][0,:,0] += x_offset_shoulder5
results_vis[i]['hands'][0,:,1] += y_offset_shoulder5
########arm3########
x_offset_arm3 = (results_vis[i]['bodies']['candidate'][2][0]-results_vis[i]['bodies']['candidate'][3][0])*(1.-arm3_ratio)
y_offset_arm3 = (results_vis[i]['bodies']['candidate'][2][1]-results_vis[i]['bodies']['candidate'][3][1])*(1.-arm3_ratio)
results_vis[i]['bodies']['candidate'][3,0] += x_offset_arm3
results_vis[i]['bodies']['candidate'][3,1] += y_offset_arm3
results_vis[i]['bodies']['candidate'][4,0] += x_offset_arm3
results_vis[i]['bodies']['candidate'][4,1] += y_offset_arm3
results_vis[i]['hands'][1,:,0] += x_offset_arm3
results_vis[i]['hands'][1,:,1] += y_offset_arm3
########arm4########
x_offset_arm4 = (results_vis[i]['bodies']['candidate'][3][0]-results_vis[i]['bodies']['candidate'][4][0])*(1.-arm4_ratio)
y_offset_arm4 = (results_vis[i]['bodies']['candidate'][3][1]-results_vis[i]['bodies']['candidate'][4][1])*(1.-arm4_ratio)
results_vis[i]['bodies']['candidate'][4,0] += x_offset_arm4
results_vis[i]['bodies']['candidate'][4,1] += y_offset_arm4
results_vis[i]['hands'][1,:,0] += x_offset_arm4
results_vis[i]['hands'][1,:,1] += y_offset_arm4
########arm6########
x_offset_arm6 = (results_vis[i]['bodies']['candidate'][5][0]-results_vis[i]['bodies']['candidate'][6][0])*(1.-arm6_ratio)
y_offset_arm6 = (results_vis[i]['bodies']['candidate'][5][1]-results_vis[i]['bodies']['candidate'][6][1])*(1.-arm6_ratio)
results_vis[i]['bodies']['candidate'][6,0] += x_offset_arm6
results_vis[i]['bodies']['candidate'][6,1] += y_offset_arm6
results_vis[i]['bodies']['candidate'][7,0] += x_offset_arm6
results_vis[i]['bodies']['candidate'][7,1] += y_offset_arm6
results_vis[i]['hands'][0,:,0] += x_offset_arm6
results_vis[i]['hands'][0,:,1] += y_offset_arm6
########arm7########
x_offset_arm7 = (results_vis[i]['bodies']['candidate'][6][0]-results_vis[i]['bodies']['candidate'][7][0])*(1.-arm7_ratio)
y_offset_arm7 = (results_vis[i]['bodies']['candidate'][6][1]-results_vis[i]['bodies']['candidate'][7][1])*(1.-arm7_ratio)
results_vis[i]['bodies']['candidate'][7,0] += x_offset_arm7
results_vis[i]['bodies']['candidate'][7,1] += y_offset_arm7
results_vis[i]['hands'][0,:,0] += x_offset_arm7
results_vis[i]['hands'][0,:,1] += y_offset_arm7
########head14########
x_offset_head14 = (results_vis[i]['bodies']['candidate'][0][0]-results_vis[i]['bodies']['candidate'][14][0])*(1.-head14_ratio)
y_offset_head14 = (results_vis[i]['bodies']['candidate'][0][1]-results_vis[i]['bodies']['candidate'][14][1])*(1.-head14_ratio)
results_vis[i]['bodies']['candidate'][14,0] += x_offset_head14
results_vis[i]['bodies']['candidate'][14,1] += y_offset_head14
results_vis[i]['bodies']['candidate'][16,0] += x_offset_head14
results_vis[i]['bodies']['candidate'][16,1] += y_offset_head14
########head15########
x_offset_head15 = (results_vis[i]['bodies']['candidate'][0][0]-results_vis[i]['bodies']['candidate'][15][0])*(1.-head15_ratio)
y_offset_head15 = (results_vis[i]['bodies']['candidate'][0][1]-results_vis[i]['bodies']['candidate'][15][1])*(1.-head15_ratio)
results_vis[i]['bodies']['candidate'][15,0] += x_offset_head15
results_vis[i]['bodies']['candidate'][15,1] += y_offset_head15
results_vis[i]['bodies']['candidate'][17,0] += x_offset_head15
results_vis[i]['bodies']['candidate'][17,1] += y_offset_head15
########head16########
x_offset_head16 = (results_vis[i]['bodies']['candidate'][14][0]-results_vis[i]['bodies']['candidate'][16][0])*(1.-head16_ratio)
y_offset_head16 = (results_vis[i]['bodies']['candidate'][14][1]-results_vis[i]['bodies']['candidate'][16][1])*(1.-head16_ratio)
results_vis[i]['bodies']['candidate'][16,0] += x_offset_head16
results_vis[i]['bodies']['candidate'][16,1] += y_offset_head16
########head17########
x_offset_head17 = (results_vis[i]['bodies']['candidate'][15][0]-results_vis[i]['bodies']['candidate'][17][0])*(1.-head17_ratio)
y_offset_head17 = (results_vis[i]['bodies']['candidate'][15][1]-results_vis[i]['bodies']['candidate'][17][1])*(1.-head17_ratio)
results_vis[i]['bodies']['candidate'][17,0] += x_offset_head17
results_vis[i]['bodies']['candidate'][17,1] += y_offset_head17
# ########MovingAverage########
########left leg########
x_offset_ll1 = (results_vis[i]['bodies']['candidate'][9][0]-results_vis[i]['bodies']['candidate'][8][0])*(ll1_ratio-1.)
y_offset_ll1 = (results_vis[i]['bodies']['candidate'][9][1]-results_vis[i]['bodies']['candidate'][8][1])*(ll1_ratio-1.)
results_vis[i]['bodies']['candidate'][9,0] += x_offset_ll1
results_vis[i]['bodies']['candidate'][9,1] += y_offset_ll1
results_vis[i]['bodies']['candidate'][10,0] += x_offset_ll1
results_vis[i]['bodies']['candidate'][10,1] += y_offset_ll1
results_vis[i]['bodies']['candidate'][19,0] += x_offset_ll1
results_vis[i]['bodies']['candidate'][19,1] += y_offset_ll1
x_offset_ll2 = (results_vis[i]['bodies']['candidate'][10][0]-results_vis[i]['bodies']['candidate'][9][0])*(ll2_ratio-1.)
y_offset_ll2 = (results_vis[i]['bodies']['candidate'][10][1]-results_vis[i]['bodies']['candidate'][9][1])*(ll2_ratio-1.)
results_vis[i]['bodies']['candidate'][10,0] += x_offset_ll2
results_vis[i]['bodies']['candidate'][10,1] += y_offset_ll2
results_vis[i]['bodies']['candidate'][19,0] += x_offset_ll2
results_vis[i]['bodies']['candidate'][19,1] += y_offset_ll2
########right leg########
x_offset_rl1 = (results_vis[i]['bodies']['candidate'][12][0]-results_vis[i]['bodies']['candidate'][11][0])*(rl1_ratio-1.)
y_offset_rl1 = (results_vis[i]['bodies']['candidate'][12][1]-results_vis[i]['bodies']['candidate'][11][1])*(rl1_ratio-1.)
results_vis[i]['bodies']['candidate'][12,0] += x_offset_rl1
results_vis[i]['bodies']['candidate'][12,1] += y_offset_rl1
results_vis[i]['bodies']['candidate'][13,0] += x_offset_rl1
results_vis[i]['bodies']['candidate'][13,1] += y_offset_rl1
results_vis[i]['bodies']['candidate'][18,0] += x_offset_rl1
results_vis[i]['bodies']['candidate'][18,1] += y_offset_rl1
x_offset_rl2 = (results_vis[i]['bodies']['candidate'][13][0]-results_vis[i]['bodies']['candidate'][12][0])*(rl2_ratio-1.)
y_offset_rl2 = (results_vis[i]['bodies']['candidate'][13][1]-results_vis[i]['bodies']['candidate'][12][1])*(rl2_ratio-1.)
results_vis[i]['bodies']['candidate'][13,0] += x_offset_rl2
results_vis[i]['bodies']['candidate'][13,1] += y_offset_rl2
results_vis[i]['bodies']['candidate'][18,0] += x_offset_rl2
results_vis[i]['bodies']['candidate'][18,1] += y_offset_rl2
results_vis[i]['bodies']['candidate'] += offset[np.newaxis, :]
results_vis[i]['faces'] += offset[np.newaxis, np.newaxis, :]
results_vis[i]['hands'] += offset[np.newaxis, np.newaxis, :]
for i in range(len(results_vis)):
dwpose_woface, dwpose_wface = draw_pose(results_vis[i], H=768, W=512)
img_path = save_motion+'/' + str(i).zfill(4) + '.jpg'
cv2.imwrite(img_path, dwpose_woface)
dwpose_woface, dwpose_wface = draw_pose(pose_ref, H=768, W=512)
img_path = save_warp+'/' + 'ref_pose.jpg'
cv2.imwrite(img_path, dwpose_woface)
logger = get_logger('dw pose extraction')
if __name__=='__main__':
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--ref_name", type=str, default="data/images/IMG_20240514_104337.jpg",)
parser.add_argument("--source_video_paths", type=str, default="data/videos/source_video.mp4",)
parser.add_argument("--saved_pose_dir", type=str, default="data/saved_pose/IMG_20240514_104337",)
args = parser.parse_args()
return args
args = parse_args()
mp_main(args) |