Spaces:
Running
Running
File size: 11,739 Bytes
7c045bd 0b10a80 7c045bd a77c071 7c045bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""
Gradio Interface for Training Classification Models
This script provides a Gradio-based user interface to train classification models using various datasets
and algorithms. It allows users to select models, preprocess data, specify hyperparameters, and visualize
results through an intuitive web interface.
Features:
- **Model Selection**: Choose from classification algorithms in `models/supervised/classification`.
- **Dataset Input Options**:
- Upload a local CSV file.
- Specify a path to a dataset.
- Download datasets from Kaggle by uploading `kaggle.json` and specifying a competition name.
- **Hyperparameter Customization**: Modify parameters such as test size, random state, CV folds, and scoring metric.
- **Visualizations**: If enabled, generate classification metrics charts and confusion matrices after training.
- **Interactive Training**: Outputs training metrics, best hyperparameters, and paths to saved models.
Usage:
- Place this script in `interfaces/gradio/`.
- Ensure proper project structure and availability of `train_classification_model.py` and classification model modules.
- Run the script. A Gradio interface will launch for interactive model training.
Requirements:
- Python 3.7 or higher
- Required Python libraries as specified in `requirements.txt`
- Properly structured project with `train_classification_model.py` and classification modules.
"""
import gradio as gr
import pandas as pd
import os
import subprocess
import sys
import glob
import re
def get_classification_model_modules():
# Get the list of available classification model modules
models_dir = os.path.join('models', 'supervised', 'classification')
model_files = glob.glob(os.path.join(models_dir, '*.py'))
print(f"Looking for model files in: {models_dir}")
print(f"Found model files: {model_files}")
models = [os.path.splitext(os.path.basename(f))[0] for f in model_files if not f.endswith('__init__.py')]
model_modules = [f"{model}" for model in models]
return model_modules
def download_kaggle_data(json_path, competition_name):
# Import the get_kaggle_data function
from data.datasets.kaggle_data import get_kaggle_data
data_path = get_kaggle_data(json_path=json_path, data_name=competition_name, is_competition=True)
return data_path
def train_model(model_module, data_option, data_file, data_path, data_name_kaggle, kaggle_json_file, competition_name,
target_variable, drop_columns, test_size, random_state, cv_folds,
scoring_metric, model_save_path, results_save_path, visualize):
# Determine data_path
if data_option == 'Upload Data File':
if data_file is None:
return "Please upload a data file.", None
data_path = data_file # data_file is the path to the uploaded file
elif data_option == 'Provide Data Path':
if not os.path.exists(data_path):
return "Provided data path does not exist.", None
elif data_option == 'Download from Kaggle':
if kaggle_json_file is None:
return "Please upload your kaggle.json file.", None
else:
# Save the kaggle.json file to ~/.kaggle/kaggle.json
import shutil
kaggle_config_dir = os.path.expanduser('~/.kaggle')
os.makedirs(kaggle_config_dir, exist_ok=True)
kaggle_json_path = os.path.join(kaggle_config_dir, 'kaggle.json')
shutil.copy(kaggle_json_file.name, kaggle_json_path)
os.chmod(kaggle_json_path, 0o600)
data_dir = download_kaggle_data(json_path=kaggle_json_path, competition_name=competition_name)
if data_dir is None:
return "Failed to download data from Kaggle.", None
# Use the specified data_name_kaggle
data_path = os.path.join(data_dir, data_name_kaggle)
if not os.path.exists(data_path):
return f"{data_name_kaggle} not found in the downloaded Kaggle data.", None
else:
return "Invalid data option selected.", None
# Prepare command-line arguments for train_classification_model.py
cmd = [sys.executable, os.path.join('scripts', 'train_classification_model.py')]
cmd.extend(['--model_module', model_module])
cmd.extend(['--data_path', data_path])
cmd.extend(['--target_variable', target_variable])
if drop_columns:
cmd.extend(['--drop_columns', ','.join(drop_columns)])
if test_size != 0.2:
cmd.extend(['--test_size', str(test_size)])
if random_state != 42:
cmd.extend(['--random_state', str(int(random_state))])
if cv_folds != 5:
cmd.extend(['--cv_folds', str(int(cv_folds))])
if scoring_metric:
cmd.extend(['--scoring_metric', scoring_metric])
if model_save_path:
cmd.extend(['--model_path', model_save_path])
if results_save_path:
cmd.extend(['--results_path', results_save_path])
if visualize:
cmd.append('--visualize')
print(f"Executing command: {' '.join(cmd)}")
try:
result = subprocess.run(cmd, capture_output=True, text=True)
output = result.stdout
errors = result.stderr
if result.returncode != 0:
return f"Error during training:\n{errors}", None
else:
# Clean up output
output = re.sub(r"Figure\(\d+x\d+\)", "", output).strip()
# Attempt to find confusion_matrix.png if visualize is True
plot_image_path = None
if results_save_path:
# Showing the confusion matrix
plot_image_path = os.path.join(results_save_path, 'confusion_matrix.png')
else:
# Default path if results_save_path is not provided
plot_image_path = output.split('Confusion matrix saved to ')[1].strip()
return f"Training completed successfully.\n\n{output}", plot_image_path
except Exception as e:
return f"An error occurred:\n{str(e)}", None
def get_columns_from_data(data_option, data_file, data_path, data_name_kaggle, kaggle_json_file, competition_name):
# Determine data_path
if data_option == 'Upload Data File':
if data_file is None:
return []
data_path = data_file
elif data_option == 'Provide Data Path':
if not os.path.exists(data_path):
return []
elif data_option == 'Download from Kaggle':
if kaggle_json_file is None:
return []
else:
import shutil
kaggle_config_dir = os.path.expanduser('~/.kaggle')
os.makedirs(kaggle_config_dir, exist_ok=True)
kaggle_json_path = os.path.join(kaggle_config_dir, 'kaggle.json')
shutil.copy(kaggle_json_file.name, kaggle_json_path)
os.chmod(kaggle_json_path, 0o600)
data_dir = download_kaggle_data(json_path=kaggle_json_path, competition_name=competition_name)
if data_dir is None:
return []
data_path = os.path.join(data_dir, data_name_kaggle)
if not os.path.exists(data_path):
return []
else:
return []
try:
data = pd.read_csv(data_path)
columns = data.columns.tolist()
return columns
except Exception as e:
print(f"Error reading data file: {e}")
return []
def update_columns(data_option, data_file, data_path, data_name_kaggle, kaggle_json_file, competition_name):
columns = get_columns_from_data(data_option, data_file, data_path, data_name_kaggle, kaggle_json_file, competition_name)
if not columns:
return gr.update(choices=[]), gr.update(choices=[])
else:
return gr.update(choices=columns), gr.update(choices=columns)
model_modules = get_classification_model_modules()
if not model_modules:
print("No classification model modules found. Check 'models/supervised/classification' directory.")
with gr.Blocks() as demo:
gr.Markdown("# Train a Classification Model")
with gr.Row():
model_module_input = gr.Dropdown(choices=model_modules, label="Select Classification Model Module")
scoring_metric_input = gr.Textbox(value='accuracy', label="Scoring Metric (e.g., accuracy, f1, roc_auc)")
with gr.Row():
test_size_input = gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.2, label="Test Size")
random_state_input = gr.Number(value=42, label="Random State")
cv_folds_input = gr.Number(value=5, label="CV Folds", precision=0)
visualize_input = gr.Checkbox(label="Generate Visualizations (metrics & confusion matrix)", value=True)
with gr.Row():
model_save_path_input = gr.Textbox(value='', label="Model Save Path (optional)")
results_save_path_input = gr.Textbox(value='', label="Results Save Path (optional)")
with gr.Tab("Data Input"):
data_option_input = gr.Radio(choices=['Upload Data File', 'Provide Data Path', 'Download from Kaggle'], label="Data Input Option", value='Upload Data File')
upload_data_col = gr.Column(visible=True)
with upload_data_col:
data_file_input = gr.File(label="Upload CSV Data File", type="filepath")
data_path_col = gr.Column(visible=False)
with data_path_col:
data_path_input = gr.Textbox(value='', label="Data File Path")
kaggle_data_col = gr.Column(visible=False)
with kaggle_data_col:
kaggle_json_file_input = gr.File(label="Upload kaggle.json File", type="filepath")
competition_name_input = gr.Textbox(value='', label="Kaggle Competition Name")
data_name_kaggle_input = gr.Textbox(value='train.csv', label="Data File Name (in Kaggle dataset)")
def toggle_data_input(option):
if option == 'Upload Data File':
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif option == 'Provide Data Path':
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
elif option == 'Download from Kaggle':
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
data_option_input.change(
fn=toggle_data_input,
inputs=[data_option_input],
outputs=[upload_data_col, data_path_col, kaggle_data_col]
)
update_cols_btn = gr.Button("Update Columns")
target_variable_input = gr.Dropdown(choices=[], label="Select Target Variable")
drop_columns_input = gr.CheckboxGroup(choices=[], label="Columns to Drop")
update_cols_btn.click(
fn=update_columns,
inputs=[data_option_input, data_file_input, data_path_input, data_name_kaggle_input, kaggle_json_file_input, competition_name_input],
outputs=[target_variable_input, drop_columns_input]
)
train_btn = gr.Button("Train Model")
output_display = gr.Textbox(label="Output")
image_display = gr.Image(label="Visualization", visible=True)
def run_training(*args):
output_text, plot_image_path = train_model(*args)
if plot_image_path and os.path.exists(plot_image_path):
return output_text, plot_image_path
else:
return output_text, None
train_btn.click(
fn=run_training,
inputs=[
model_module_input, data_option_input, data_file_input, data_path_input,
data_name_kaggle_input, kaggle_json_file_input, competition_name_input,
target_variable_input, drop_columns_input, test_size_input, random_state_input, cv_folds_input,
scoring_metric_input, model_save_path_input, results_save_path_input, visualize_input
],
outputs=[output_display, image_display]
)
if __name__ == "__main__":
demo.launch() |