Spaces:
Runtime error
Runtime error
File size: 18,583 Bytes
495245d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
from sentence_transformers import SentenceTransformer, util
import json
import time
import pandas as pd
import numpy as np
import pickle
import chromadb
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from chromadb.db.clickhouse import NoDatapointsException
def prepare_cd(conceptDescriptions):
df_cd = pd.DataFrame(
columns=["SemanticId", "Definition", "PreferredName", "Datatype", "Unit"]
)
# In den leeren DF werden alle Concept Descriptions eingelesen
for cd in conceptDescriptions:
semantic_id = cd["identification"]["id"]
data_spec = cd["embeddedDataSpecifications"][0]["dataSpecificationContent"]
preferred_name = data_spec["preferredName"]
short_name = data_spec["shortName"]
if len(preferred_name) > 1:
for name_variant in preferred_name:
if (
name_variant["language"] == "EN"
or name_variant["language"] == "en"
or name_variant["language"] == "EN?"
):
name = name_variant["text"]
elif len(preferred_name) == 1:
name = preferred_name[0]["text"]
elif len(preferred_name) == 0:
short_name = data_spec["shortName"]
if len(short_name) == 0:
name = "NaN"
else:
name = short_name[0]["text"]
definition = data_spec["definition"]
if len(definition) > 1:
for definition_variant in definition:
if (
definition_variant["language"] == "EN"
or definition_variant["language"] == "en"
or definition_variant["language"] == "EN?"
):
chosen_def = definition_variant["text"]
elif len(definition) == 1:
chosen_def = definition[0]["text"]
elif len(definition) == 0:
chosen_def = "NaN"
if data_spec["dataType"] == "":
datatype = "NaN"
else:
datatype = data_spec["dataType"]
if data_spec["unit"] == "":
unit = "NaN"
else:
unit = data_spec["unit"]
new_entry = pd.DataFrame(
{
"SemanticId": semantic_id,
"Definition": chosen_def,
"PreferredName": name,
"Datatype": datatype,
"Unit": unit,
},
index=[0],
)
df_cd = pd.concat([df_cd, new_entry], ignore_index=True)
return df_cd
def get_values(submodel_element):
# Auslesen der Submodel Element Werte
se_type = submodel_element["modelType"]["name"]
se_semantic_id = submodel_element["semanticId"]["keys"][0]["value"]
se_semantic_id_local = submodel_element["semanticId"]["keys"][0]["local"]
se_id_short = submodel_element["idShort"]
value = []
se_value = submodel_element["value"]
value.append(se_value)
return se_type, se_semantic_id, se_semantic_id_local, se_id_short, value
def get_concept_description(semantic_id, df_cd):
cd_content = df_cd.loc[df_cd["SemanticId"] == semantic_id]
if cd_content.empty:
cd_content = pd.DataFrame(
{
"SemanticId": semantic_id,
"Definition": "NaN",
"PreferredName": "NaN",
"Datatype": "NaN",
"Unit": "NaN",
},
index=[0],
)
cd_content = cd_content.iloc[0]
return cd_content
def get_values_sec(
df_cd,
content,
df,
aas_id,
aas_name,
submodel_id,
submodel_name,
submodel_semantic_id,
):
collection_values = content[0]["value"]
for element in collection_values:
content = []
content.append(element)
se_type, se_semantic_id, se_semantic_id_local, se_id_short, value = get_values(
element
)
if se_type == "SubmodelElementCollection":
if se_semantic_id_local == True:
cd_content = get_concept_description(se_semantic_id, df_cd)
definition = cd_content["Definition"]
preferred_name = cd_content["PreferredName"]
datatype = cd_content["Datatype"]
unit = cd_content["Unit"]
else:
definition = "NaN"
preferred_name = "NaN"
datatype = "NaN"
unit = "NaN"
new_row = pd.DataFrame(
{
"AASId": aas_id,
"AASIdShort": aas_name,
"SubmodelId": submodel_id,
"SubmodelName": submodel_name,
"SubmodelSemanticId": submodel_semantic_id,
"SEContent": content,
"SESemanticId": se_semantic_id,
"SEModelType": se_type,
"SEIdShort": se_id_short,
"SEValue": value,
"Definition": definition,
"PreferredName": preferred_name,
"Datatype": datatype,
"Unit": unit,
}
)
df = pd.concat([df, new_row], ignore_index=True)
content = []
content.append(element)
# Rekursive Funktion -> so oft durchlaufen bis unterste Ebene der Collections erreicht ist, so werden verschachteltet SECs bis zum Ende ausgelesen
df = get_values_sec(
df_cd,
content,
df,
aas_id,
aas_name,
submodel_id,
submodel_name,
submodel_semantic_id,
)
else:
if se_semantic_id_local == True:
cd_content = get_concept_description(se_semantic_id, df_cd)
definition = cd_content["Definition"]
preferred_name = cd_content["PreferredName"]
datatype = cd_content["Datatype"]
unit = cd_content["Unit"]
else:
definition = "NaN"
preferred_name = "NaN"
datatype = "NaN"
unit = "NaN"
new_row = pd.DataFrame(
{
"AASId": aas_id,
"AASIdShort": aas_name,
"SubmodelId": submodel_id,
"SubmodelName": submodel_name,
"SubmodelSemanticId": submodel_semantic_id,
"SEContent": content,
"SESemanticId": se_semantic_id,
"SEModelType": se_type,
"SEIdShort": se_id_short,
"SEValue": value,
"Definition": definition,
"PreferredName": preferred_name,
"Datatype": datatype,
"Unit": unit,
}
)
df = pd.concat([df, new_row], ignore_index=True)
return df
def set_up_metadata(metalabel, df):
datatype_mapping = {
"boolean": "BOOLEAN",
"string": "STRING",
"string_translatable": "STRING",
"translatable_string": "STRING",
"non_translatable_string": "STRING",
"date": "DATE",
"data_time": "DATE",
"uri": "URI",
"int": "INT",
"int_measure": "INT",
"int_currency": "INT",
"integer": "INT",
"real": "REAL",
"real_measure": "REAL",
"real_currency": "REAL",
"enum_code": "ENUM_CODE",
"enum_int": "ENUM_CODE",
"ENUM_REAL": "ENUM_CODE",
"ENUM_RATIONAL": "ENUM_CODE",
"ENUM_BOOLEAN": "ENUM_CODE",
"ENUM_STRING": "ENUM_CODE",
"enum_reference": "ENUM_CODE",
"enum_instance": "ENUM_CODE",
"set(b1,b2)": "SET",
"constrained_set(b1,b2,cmn,cmx)": "SET",
"set [0,?]": "SET",
"set [1,?]": "SET",
"set [1, ?]": "SET",
"nan": "NaN",
"media_type": "LARGE_OBJECT_TYPE",
}
unit_mapping = {
"nan": "NaN",
"hertz": "FREQUENCY",
"hz": "FREQUENCY",
"pa": "PRESSURE",
"pascal": "PRESSURE",
"n/m²": "PRESSURE",
"bar": "PRESSURE",
"%": "SCALARS_PERC",
"w": "POWER",
"watt": "POWER",
"kw": "POWER",
"kg/m³": "CHEMISTRY",
"m²/s": "CHEMISTRY",
"pa*s": "CHEMISTRY",
"v": "ELECTRICAL",
"volt": "ELECTRICAL",
"db": "ACOUSTICS",
"db(a)": "ACOUSTICS",
"k": "TEMPERATURE",
"°c": "TEMPERATURE",
"n": "MECHANICS",
"newton": "MECHANICS",
"kg/s": "FLOW",
"kg/h": "FLOW",
"m³/s": "FLOW",
"m³/h": "FLOW",
"l/s": "FLOW",
"l/h": "FLOW",
"µm": "LENGTH",
"mm": "LENGTH",
"cm": "LENGTH",
"dm": "LENGTH",
"m": "LENGTH",
"meter": "LENGTH",
"m/s": "SPEED",
"km/h": "SPEED",
"s^(-1)": "FREQUENCY",
"1/s": "FREQUENCY",
"s": "TIME",
"h": "TIME",
"min": "TIME",
"d": "TIME",
"hours": "TIME",
"a": "ELECTRICAL",
"m³": "VOLUME",
"m²": "AREA",
"rpm": "FLOW",
"nm": "MECHANICS",
"m/m": "MECHANICS",
"m³/m²s": "MECHANICS",
"w(m²*K)": "HEAT_TRANSFER",
"kwh": "ELECTRICAL",
"kg/(s*m²)": "FLOW",
"kg": "MASS",
"w/(m*k)": "HEAT_TRANSFER",
"m²*k/w": "HEAT_TRANSFER",
"j/s": "POWER",
}
dataset = df
dataset["unit_lowercase"] = dataset["Unit"]
dataset["unit_lowercase"] = dataset["unit_lowercase"].str.lower()
dataset["unit_categ"] = dataset["unit_lowercase"].map(unit_mapping)
dataset["datatype_lowercase"] = dataset["Datatype"]
dataset["datatype_lowercase"] = dataset["datatype_lowercase"].str.lower()
dataset["datatype_categ"] = dataset["datatype_lowercase"].map(datatype_mapping)
dataset = dataset.fillna("NaN")
dataset["index"] = dataset.index
# uni_datatype=dataset['datatype_categ'].unique()
# uni_unit=dataset['unit_categ'].unique()
unique_labels_set = set()
dataset["Metalabel"] = ""
for i in range(0, len(dataset["Metalabel"])):
concat = (str(dataset["unit_categ"][i]), str(dataset["datatype_categ"][i]))
keys = [k for k, v in metalabel.items() if v == concat]
dataset["Metalabel"][i] = keys[0]
unique_labels_set.add(keys[0])
unique_label = list(unique_labels_set)
print(unique_label)
return dataset
def encode(aas_df, model):
# Einsatz von Sentence Bert um Embeddings zu kreieren
aas_df["PreferredName"] = "Name: " + aas_df["PreferredName"].astype(str)
aas_df["Definition"] = "Description: " + aas_df["Definition"].astype(str) + "; "
corpus_names = aas_df.loc[:, "PreferredName"]
corpus_definitions = aas_df.loc[:, "Definition"]
embeddings_definitions = model.encode(corpus_definitions, show_progress_bar=True)
embeddings_names = model.encode(corpus_names, show_progress_bar=True)
concat_name_def_emb = np.concatenate(
(embeddings_definitions, embeddings_names), axis=1
)
# aas_df['EmbeddingDefinition'] = embeddings_definitions.tolist()
# aas_df['EmbeddingName'] = embeddings_names.tolist()
aas_df["EmbeddingNameDefinition"] = concat_name_def_emb.tolist()
return aas_df
def convert_to_list(aas_df):
# Für die Datenbank werden teilweise Listen gebraucht
aas_index = aas_df.index.tolist()
aas_index_str = [str(r) for r in aas_index]
se_content = aas_df["SEContent"].tolist()
se_embedding_name_definition = aas_df["EmbeddingNameDefinition"].tolist()
aas_df_dropped = aas_df.drop(
["EmbeddingNameDefinition", "SEContent", "SEValue"], axis=1
)
metadata = aas_df_dropped.to_dict("records")
return metadata, aas_index_str, se_content, se_embedding_name_definition
def set_up_chroma(
metadata, aas_index_str, se_content, se_embedding_name_definition, aas_name, client
):
aas_name = aas_name.lower()
# Kein Großbuchstaben in Datenbank erlaubt
print(aas_name)
# client = chromadb.Client(Settings(
# chroma_db_impl="duckdb+parquet",
# persist_directory="./drive/My Drive/Colab/NLP/SemantischeInteroperabilität/Deployment" # Optional, defaults to .chromadb/ in the current directory
# ))
emb_fn = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="gart-labor/eng-distilBERT-se-eclass"
)
collection = client.get_or_create_collection(
name=aas_name, embedding_function=emb_fn
)
aas_content_string = []
# Umwandeln in Json damit es in db geschrieben werden kann
for element in se_content:
content = json.dumps(element)
aas_content_string.append(content)
items = collection.count() # returns the number of items in the collection
print(collection)
print("Datenbank erstellt, Anzahl Items:")
print(items)
if items == 0:
# Hinzufügen der SE Inhalte, der Embeddings und weiterer Metadaten in collection der Datenbank
collection.add(
documents=aas_content_string,
embeddings=se_embedding_name_definition,
metadatas=metadata,
ids=aas_index_str,
)
items = collection.count() # returns the number of items in the collection
print("------------")
print("Datenbank befüllt, Anzahl items:")
print(items)
else:
print("-----------")
print("AAS schon vorhanden")
return collection
def read_aas(aas, submodels, assets, conceptDescriptions, submodels_ids, metalabel):
df = pd.DataFrame(
columns=[
"AASId",
"AASIdShort",
"SubmodelId",
"SubmodelName",
"SubmodelSemanticId",
"SEContent",
"SESemanticId",
"SEModelType",
"SEIdShort",
"SEValue",
"Definition",
"PreferredName",
"Datatype",
"Unit",
]
)
aas_id = aas[0]["identification"]["id"]
aas_name = aas[0]["idShort"]
# Aufbereiten aller Concept descriptions als pandas dataframe, damit diese nachher einfacher untersucht werden können
df_cd = prepare_cd(conceptDescriptions)
# Auslesen der Teilmodelle
for submodel in submodels:
submodel_name = submodel["idShort"]
submodel_id = submodel["identification"]["id"]
# Muss gemacht werden, da Anzahl der Teilmodelle innerhalb der AAS und des Env nicht immer übereisntimmen
if submodel_id in submodels_ids:
semantic_id_existing = submodel["semanticId"]["keys"]
if not semantic_id_existing:
submodel_semantic_id = "Not defined"
else:
submodel_semantic_id = semantic_id_existing[0]["value"]
submodel_elements = submodel["submodelElements"]
# Auslesen Submodel Elements
for submodel_element in submodel_elements:
content = []
content.append(submodel_element)
(
se_type,
se_semantic_id,
se_semantic_id_local,
se_id_short,
value,
) = get_values(submodel_element)
# When Concept Description local dann auslesen der Concept Description
if se_semantic_id_local == True:
cd_content = get_concept_description(se_semantic_id, df_cd)
definition = cd_content["Definition"]
preferred_name = cd_content["PreferredName"]
datatype = cd_content["Datatype"]
unit = cd_content["Unit"]
else:
definition = "NaN"
preferred_name = "NaN"
datatype = "NaN"
unit = "NaN"
new_row = pd.DataFrame(
{
"AASId": aas_id,
"AASIdShort": aas_name,
"SubmodelId": submodel_id,
"SubmodelName": submodel_name,
"SubmodelSemanticId": submodel_semantic_id,
"SEContent": content,
"SESemanticId": se_semantic_id,
"SEModelType": se_type,
"SEIdShort": se_id_short,
"SEValue": value,
"Definition": definition,
"PreferredName": preferred_name,
"Datatype": datatype,
"Unit": unit,
}
)
df = pd.concat([df, new_row], ignore_index=True)
# Wenn Submodel Element Collection dann diese Werte auch auslesen
if se_type == "SubmodelElementCollection":
df = get_values_sec(
df_cd,
content,
df,
aas_id,
aas_name,
submodel_id,
submodel_name,
submodel_semantic_id,
)
else:
continue
df = set_up_metadata(metalabel, df)
return df, aas_name
def index_corpus(data, model, metalabel, client_chroma):
# Start Punkt
aas = data["assetAdministrationShells"]
aas_submodels = aas[0]["submodels"]
submodels_ids = []
for submodel in aas_submodels:
submodels_ids.append(submodel["keys"][0]["value"])
submodels = data["submodels"]
conceptDescriptions = data["conceptDescriptions"]
assets = data["assets"]
aas_df, aas_name = read_aas(
aas, submodels, assets, conceptDescriptions, submodels_ids, metalabel
)
# aas_df_embeddings = encode(aas_df, model)
aas_df = encode(aas_df, model)
metadata, aas_index_str, se_content, se_embedding_name_definition = convert_to_list(
aas_df
)
collection = set_up_chroma(
metadata,
aas_index_str,
se_content,
se_embedding_name_definition,
aas_name,
client_chroma,
)
return collection
# if __name__ == '__main__':
# create_database = index_corpus(aas = 'festo_switch.json')
|