Spaces:
Running
Running
File size: 12,651 Bytes
c9baa67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
from collections import Counter
import io
import os
import pickle
import random
from boltons.iterutils import chunked
import lmdb
import numpy as np
from PIL import Image
import pysaliency
from pysaliency.datasets import create_subset
from pysaliency.utils import remove_trailing_nans
import torch
from tqdm import tqdm
def ensure_color_image(image):
if len(image.shape) == 2:
return np.dstack([image, image, image])
return image
def x_y_to_sparse_indices(xs, ys):
# Converts list of x and y coordinates into indices and values for sparse mask
x_inds = []
y_inds = []
values = []
pair_inds = {}
for x, y in zip(xs, ys):
key = (x, y)
if key not in pair_inds:
x_inds.append(x)
y_inds.append(y)
pair_inds[key] = len(x_inds) - 1
values.append(1)
else:
values[pair_inds[key]] += 1
return np.array([y_inds, x_inds]), values
class ImageDataset(torch.utils.data.Dataset):
def __init__(
self,
stimuli,
fixations,
centerbias_model=None,
lmdb_path=None,
transform=None,
cached=None,
average='fixation'
):
self.stimuli = stimuli
self.fixations = fixations
self.centerbias_model = centerbias_model
self.lmdb_path = lmdb_path
self.transform = transform
self.average = average
# cache only short dataset
if cached is None:
cached = len(self.stimuli) < 100
cache_fixation_data = cached
if lmdb_path is not None:
_export_dataset_to_lmdb(stimuli, centerbias_model, lmdb_path)
self.lmdb_env = lmdb.open(lmdb_path, subdir=os.path.isdir(lmdb_path),
readonly=True, lock=False,
readahead=False, meminit=False
)
cached = False
cache_fixation_data = True
else:
self.lmdb_env = None
self.cached = cached
if cached:
self._cache = {}
self.cache_fixation_data = cache_fixation_data
if cache_fixation_data:
print("Populating fixations cache")
self._xs_cache = {}
self._ys_cache = {}
for x, y, n in zip(self.fixations.x_int, self.fixations.y_int, tqdm(self.fixations.n)):
self._xs_cache.setdefault(n, []).append(x)
self._ys_cache.setdefault(n, []).append(y)
for key in list(self._xs_cache):
self._xs_cache[key] = np.array(self._xs_cache[key], dtype=int)
for key in list(self._ys_cache):
self._ys_cache[key] = np.array(self._ys_cache[key], dtype=int)
def get_shapes(self):
return list(self.stimuli.sizes)
def _get_image_data(self, n):
if self.lmdb_env:
image, centerbias_prediction = _get_image_data_from_lmdb(self.lmdb_env, n)
else:
image = np.array(self.stimuli.stimuli[n])
centerbias_prediction = self.centerbias_model.log_density(image)
image = ensure_color_image(image).astype(np.float32)
image = image.transpose(2, 0, 1)
return image, centerbias_prediction
def __getitem__(self, key):
if not self.cached or key not in self._cache:
image, centerbias_prediction = self._get_image_data(key)
centerbias_prediction = centerbias_prediction.astype(np.float32)
if self.cache_fixation_data and self.cached:
xs = self._xs_cache.pop(key)
ys = self._ys_cache.pop(key)
elif self.cache_fixation_data and not self.cached:
xs = self._xs_cache[key]
ys = self._ys_cache[key]
else:
inds = self.fixations.n == key
xs = np.array(self.fixations.x_int[inds], dtype=int)
ys = np.array(self.fixations.y_int[inds], dtype=int)
data = {
"image": image,
"x": xs,
"y": ys,
"centerbias": centerbias_prediction,
}
if self.average == 'image':
data['weight'] = 1.0
else:
data['weight'] = float(len(xs))
if self.cached:
self._cache[key] = data
else:
data = self._cache[key]
if self.transform is not None:
return self.transform(dict(data))
return data
def __len__(self):
return len(self.stimuli)
class FixationDataset(torch.utils.data.Dataset):
def __init__(
self,
stimuli, fixations,
centerbias_model=None,
lmdb_path=None,
transform=None,
included_fixations=-2,
allow_missing_fixations=False,
average='fixation',
cache_image_data=False,
):
self.stimuli = stimuli
self.fixations = fixations
self.centerbias_model = centerbias_model
self.lmdb_path = lmdb_path
if lmdb_path is not None:
_export_dataset_to_lmdb(stimuli, centerbias_model, lmdb_path)
self.lmdb_env = lmdb.open(lmdb_path, subdir=os.path.isdir(lmdb_path),
readonly=True, lock=False,
readahead=False, meminit=False
)
cache_image_data=False
else:
self.lmdb_env = None
self.transform = transform
self.average = average
self._shapes = None
if isinstance(included_fixations, int):
if included_fixations < 0:
included_fixations = [-1 - i for i in range(-included_fixations)]
else:
raise NotImplementedError()
self.included_fixations = included_fixations
self.allow_missing_fixations = allow_missing_fixations
self.fixation_counts = Counter(fixations.n)
self.cache_image_data = cache_image_data
if self.cache_image_data:
self.image_data_cache = {}
print("Populating image cache")
for n in tqdm(range(len(self.stimuli))):
self.image_data_cache[n] = self._get_image_data(n)
def get_shapes(self):
if self._shapes is None:
shapes = list(self.stimuli.sizes)
self._shapes = [shapes[n] for n in self.fixations.n]
return self._shapes
def _get_image_data(self, n):
if self.lmdb_path:
return _get_image_data_from_lmdb(self.lmdb_env, n)
image = np.array(self.stimuli.stimuli[n])
centerbias_prediction = self.centerbias_model.log_density(image)
image = ensure_color_image(image).astype(np.float32)
image = image.transpose(2, 0, 1)
return image, centerbias_prediction
def __getitem__(self, key):
n = self.fixations.n[key]
if self.cache_image_data:
image, centerbias_prediction = self.image_data_cache[n]
else:
image, centerbias_prediction = self._get_image_data(n)
centerbias_prediction = centerbias_prediction.astype(np.float32)
x_hist = remove_trailing_nans(self.fixations.x_hist[key])
y_hist = remove_trailing_nans(self.fixations.y_hist[key])
if self.allow_missing_fixations:
_x_hist = []
_y_hist = []
for fixation_index in self.included_fixations:
if fixation_index < -len(x_hist):
_x_hist.append(np.nan)
_y_hist.append(np.nan)
else:
_x_hist.append(x_hist[fixation_index])
_y_hist.append(y_hist[fixation_index])
x_hist = np.array(_x_hist)
y_hist = np.array(_y_hist)
else:
print("Not missing")
x_hist = x_hist[self.included_fixations]
y_hist = y_hist[self.included_fixations]
data = {
"image": image,
"x": np.array([self.fixations.x_int[key]], dtype=int),
"y": np.array([self.fixations.y_int[key]], dtype=int),
"x_hist": x_hist,
"y_hist": y_hist,
"centerbias": centerbias_prediction,
}
if self.average == 'image':
data['weight'] = 1.0 / self.fixation_counts[n]
else:
data['weight'] = 1.0
if self.transform is not None:
return self.transform(data)
return data
def __len__(self):
return len(self.fixations)
class FixationMaskTransform(object):
def __init__(self, sparse=True):
super().__init__()
self.sparse = sparse
def __call__(self, item):
shape = torch.Size([item['image'].shape[1], item['image'].shape[2]])
x = item.pop('x')
y = item.pop('y')
# inds, values = x_y_to_sparse_indices(x, y)
inds = np.array([y, x])
values = np.ones(len(y), dtype=int)
mask = torch.sparse.IntTensor(torch.tensor(inds), torch.tensor(values), shape)
mask = mask.coalesce()
# sparse tensors don't work with workers...
if not self.sparse:
mask = mask.to_dense()
item['fixation_mask'] = mask
return item
class ImageDatasetSampler(torch.utils.data.Sampler):
def __init__(self, data_source, batch_size=1, ratio_used=1.0, shuffle=True):
self.ratio_used = ratio_used
self.shuffle = shuffle
shapes = data_source.get_shapes()
unique_shapes = sorted(set(shapes))
shape_indices = [[] for shape in unique_shapes]
for k, shape in enumerate(shapes):
shape_indices[unique_shapes.index(shape)].append(k)
if self.shuffle:
for indices in shape_indices:
random.shuffle(indices)
self.batches = sum([chunked(indices, size=batch_size) for indices in shape_indices], [])
def __iter__(self):
if self.shuffle:
indices = torch.randperm(len(self.batches))
else:
indices = range(len(self.batches))
if self.ratio_used < 1.0:
indices = indices[:int(self.ratio_used * len(indices))]
return iter(self.batches[i] for i in indices)
def __len__(self):
return int(self.ratio_used * len(self.batches))
def _export_dataset_to_lmdb(stimuli: pysaliency.FileStimuli, centerbias_model: pysaliency.Model, lmdb_path, write_frequency=100):
lmdb_path = os.path.expanduser(lmdb_path)
isdir = os.path.isdir(lmdb_path)
print("Generate LMDB to %s" % lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 * 2, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
for idx, stimulus in enumerate(tqdm(stimuli)):
key = u'{}'.format(idx).encode('ascii')
previous_data = txn.get(key)
if previous_data:
continue
#timulus_data = stimulus.stimulus_data
stimulus_filename = stimuli.filenames[idx]
centerbias = centerbias_model.log_density(stimulus)
txn.put(
key,
_encode_filestimulus_item(stimulus_filename, centerbias)
)
if idx % write_frequency == 0:
#print("[%d/%d]" % (idx, len(stimuli)))
#print("stimulus ids", len(stimuli.stimulus_ids._cache))
#print("stimuli.cached", stimuli.cached)
#print("stimuli", len(stimuli.stimuli._cache))
#print("centerbias", len(centerbias_model._cache._cache))
txn.commit()
txn = db.begin(write=True)
# finish iterating through dataset
txn.commit()
#keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
#with db.begin(write=True) as txn:
# txn.put(b'__keys__', dumps_pyarrow(keys))
# txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
def _encode_filestimulus_item(filename, centerbias):
with open(filename, 'rb') as f:
image_bytes = f.read()
buffer = io.BytesIO()
pickle.dump({'image': image_bytes, 'centerbias': centerbias}, buffer)
buffer.seek(0)
return buffer.read()
def _get_image_data_from_lmdb(lmdb_env, n):
key = '{}'.format(n).encode('ascii')
with lmdb_env.begin(write=False) as txn:
byteflow = txn.get(key)
data = pickle.loads(byteflow)
buffer = io.BytesIO(data['image'])
buffer.seek(0)
image = np.array(Image.open(buffer).convert('RGB'))
centerbias_prediction = data['centerbias']
image = image.transpose(2, 0, 1)
return image, centerbias_prediction |