File size: 4,829 Bytes
c9baa67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from collections import OrderedDict
import importlib
import os


import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils import model_zoo

from .modules import FeatureExtractor, Finalizer, DeepGazeIIIMixture, MixtureModel

from .layers import (
    Conv2dMultiInput,
    LayerNorm,
    LayerNormMultiInput,
    Bias,
)


BACKBONES = [
    {
        'type': 'deepgaze_pytorch.features.shapenet.RGBShapeNetC',
        'used_features': [
            '1.module.layer3.0.conv2',
            '1.module.layer3.3.conv2',
            '1.module.layer3.5.conv1',
            '1.module.layer3.5.conv2',
            '1.module.layer4.1.conv2',
            '1.module.layer4.2.conv2',
        ],
        'channels': 2048,
    },
    {
        'type': 'deepgaze_pytorch.features.efficientnet.RGBEfficientNetB5',
        'used_features': [
            '1._blocks.24._depthwise_conv',
            '1._blocks.26._depthwise_conv',
            '1._blocks.35._project_conv',
        ],
        'channels': 2416,
    },
    {
        'type': 'deepgaze_pytorch.features.densenet.RGBDenseNet201',
        'used_features': [
            '1.features.denseblock4.denselayer32.norm1',
            '1.features.denseblock4.denselayer32.conv1',
            '1.features.denseblock4.denselayer31.conv2',
        ],
        'channels': 2048,
    },
    {
        'type': 'deepgaze_pytorch.features.resnext.RGBResNext50',
        'used_features': [
            '1.layer3.5.conv1',
            '1.layer3.5.conv2',
            '1.layer3.4.conv2',
            '1.layer4.2.conv2',
        ],
        'channels': 2560,
    },
]


def build_saliency_network(input_channels):
    return nn.Sequential(OrderedDict([
        ('layernorm0', LayerNorm(input_channels)),
        ('conv0', nn.Conv2d(input_channels, 8, (1, 1), bias=False)),
        ('bias0', Bias(8)),
        ('softplus0', nn.Softplus()),

        ('layernorm1', LayerNorm(8)),
        ('conv1', nn.Conv2d(8, 16, (1, 1), bias=False)),
        ('bias1', Bias(16)),
        ('softplus1', nn.Softplus()),

        ('layernorm2', LayerNorm(16)),
        ('conv2', nn.Conv2d(16, 1, (1, 1), bias=False)),
        ('bias2', Bias(1)),
        ('softplus3', nn.Softplus()),
    ]))


def build_fixation_selection_network():
    return nn.Sequential(OrderedDict([
        ('layernorm0', LayerNormMultiInput([1, 0])),
        ('conv0', Conv2dMultiInput([1, 0], 128, (1, 1), bias=False)),
        ('bias0', Bias(128)),
        ('softplus0', nn.Softplus()),

        ('layernorm1', LayerNorm(128)),
        ('conv1', nn.Conv2d(128, 16, (1, 1), bias=False)),
        ('bias1', Bias(16)),
        ('softplus1', nn.Softplus()),

        ('conv2', nn.Conv2d(16, 1, (1, 1), bias=False)),
    ]))


def build_deepgaze_mixture(backbone_config, components=10):
    feature_class = import_class(backbone_config['type'])
    features = feature_class()

    feature_extractor = FeatureExtractor(features, backbone_config['used_features'])

    saliency_networks = []
    scanpath_networks = []
    fixation_selection_networks = []
    finalizers = []
    for component in range(components):
        saliency_network = build_saliency_network(backbone_config['channels'])
        fixation_selection_network = build_fixation_selection_network()

        saliency_networks.append(saliency_network)
        scanpath_networks.append(None)
        fixation_selection_networks.append(fixation_selection_network)
        finalizers.append(Finalizer(sigma=8.0, learn_sigma=True, saliency_map_factor=2))

    return DeepGazeIIIMixture(
        features=feature_extractor,
        saliency_networks=saliency_networks,
        scanpath_networks=scanpath_networks,
        fixation_selection_networks=fixation_selection_networks,
        finalizers=finalizers,
        downsample=2,
        readout_factor=16,
        saliency_map_factor=2,
        included_fixations=[],
    )


class DeepGazeIIE(MixtureModel):
    """DeepGazeIIE model

    :note
    See Linardos, A., Kümmerer, M., Press, O., & Bethge, M. (2021). Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling. ArXiv:2105.12441 [Cs], http://arxiv.org/abs/2105.12441
    """
    def __init__(self, pretrained=True):
        # we average over 3 instances per backbone, each instance has 10 crossvalidation folds
        backbone_models = [build_deepgaze_mixture(backbone_config, components=3 * 10) for backbone_config in BACKBONES]
        super().__init__(backbone_models)

        if pretrained:
            self.load_state_dict(model_zoo.load_url('https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/deepgaze2e.pth', map_location=torch.device('cpu')))


def import_class(name):
    module_name, class_name = name.rsplit('.', 1)
    module = importlib.import_module(module_name)
    return getattr(module, class_name)