Spaces:
Sleeping
Sleeping
File size: 35,435 Bytes
c9baa67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
import cv2
import numpy as np
import math
import scipy.stats as st
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.lines import Line2D
import matplotlib.pyplot as plt
import operator
import time
import os
from enum import Enum
import pandas as pd
# Akisato Kimura <akisato@ieee.org> implementation of Itti's Saliency Map Generator -- https://github.com/akisatok/pySaliencyMap
from SaRa.pySaliencyMap import pySaliencyMap
# Global Variables
# Entropy, sum, depth, centre-bias
WEIGHTS = (1, 1, 1, 1)
# segments_entropies = []
segments_scores = []
segments_coords = []
seg_dim = 0
segments = []
gt_segments = []
dws = []
sara_list = []
eval_list = []
labels_eval_list = ['Image', 'Index', 'Rank', 'Quartile', 'isGT', 'Outcome']
outcome_list = []
labels_outcome_list = ['Image', 'FN', 'FP', 'TN', 'TP']
dataframe_collection = {}
error_count = 0
# SaRa Initial Functions
def generate_segments(img, seg_count) -> list:
'''
Given an image img and the desired number of segments seg_count, this
function divides the image into segments and returns a list of segments.
'''
segments = []
segment_count = seg_count
index = 0
w_interval = int(img.shape[1] / segment_count)
h_interval = int(img.shape[0] / segment_count)
for i in range(segment_count):
for j in range(segment_count):
temp_segment = img[int(h_interval * i):int(h_interval * (i + 1)),
int(w_interval * j):int(w_interval * (j + 1))]
segments.append(temp_segment)
coord_tup = (index, int(w_interval * j), int(h_interval * i),
int(w_interval * (j + 1)), int(h_interval * (i + 1)))
segments_coords.append(coord_tup)
index += 1
return segments
def return_saliency(img, generator='itti', deepgaze_model=None, emlnet_models=None, DEVICE='cpu'):
'''
Takes an image img as input and calculates the saliency map using the
Itti's Saliency Map Generator. It returns the saliency map.
'''
img_width, img_height = img.shape[1], img.shape[0]
if generator == 'itti':
sm = pySaliencyMap(img_width, img_height)
saliency_map = sm.SMGetSM(img)
# Scale pixel values to 0-255 instead of float (approx 0, hence black image)
# https://stackoverflow.com/questions/48331211/how-to-use-cv2-imshow-correctly-for-the-float-image-returned-by-cv2-distancet/48333272
saliency_map = cv2.normalize(saliency_map, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1)
elif generator == 'deepgaze':
import numpy as np
from scipy.misc import face
from scipy.ndimage import zoom
from scipy.special import logsumexp
import torch
import deepgaze_pytorch
# you can use DeepGazeI or DeepGazeIIE
# model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)
if deepgaze_model is None:
model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)
else:
model = deepgaze_model
# image = face()
image = img
# load precomputed centerbias log density (from MIT1003) over a 1024x1024 image
# you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy
# alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.
# centerbias_template = np.load('centerbias_mit1003.npy')
centerbias_template = np.zeros((1024, 1024))
# rescale to match image size
centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')
# renormalize log density
centerbias -= logsumexp(centerbias)
image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)
centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)
log_density_prediction = model(image_tensor, centerbias_tensor)
saliency_map = cv2.resize(log_density_prediction.detach().cpu().numpy()[0, 0], (img_width, img_height))
elif generator == 'fpn':
# Add ./fpn to the system path
import sys
sys.path.append('./fpn')
import inference as inf
results_dict = {}
rt_args = inf.parse_arguments(img)
# Call the run_inference function and capture the results
pred_masks_raw_list, pred_masks_round_list = inf.run_inference(rt_args)
# Store the results in the dictionary
results_dict['pred_masks_raw'] = pred_masks_raw_list
results_dict['pred_masks_round'] = pred_masks_round_list
saliency_map = results_dict['pred_masks_raw']
if img_width > img_height:
saliency_map = cv2.resize(saliency_map, (img_width, img_width))
diff = (img_width - img_height) // 2
saliency_map = saliency_map[diff:img_width - diff, 0:img_width]
else:
saliency_map = cv2.resize(saliency_map, (img_height, img_height))
diff = (img_height - img_width) // 2
saliency_map = saliency_map[0:img_height, diff:img_height - diff]
elif generator == 'emlnet':
from emlnet.eval_combined import main as eval_combined
saliency_map = eval_combined(img, emlnet_models)
# Resize to image size
saliency_map = cv2.resize(saliency_map, (img_width, img_height))
# Normalize saliency map
saliency_map = cv2.normalize(saliency_map, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1)
saliency_map = cv2.GaussianBlur(saliency_map, (31, 31), 10)
return saliency_map
saliency_map = saliency_map // 16
return saliency_map
def return_saliency_batch(images, generator='deepgaze', deepgaze_model=None, emlnet_models=None, DEVICE='cuda', BATCH_SIZE=1):
img_widths, img_heights = [], []
if generator == 'deepgaze':
import numpy as np
from scipy.misc import face
from scipy.ndimage import zoom
from scipy.special import logsumexp
import torch
import deepgaze_pytorch
# you can use DeepGazeI or DeepGazeIIE
# model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)
if deepgaze_model is None:
model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)
else:
model = deepgaze_model
# image = face()
# image = img
image_batch = torch.tensor([img.transpose(2, 0, 1) for img in images]).to(DEVICE)
centerbias_template = np.zeros((1024, 1024))
centerbias_tensors = []
for img in images:
centerbias = zoom(centerbias_template, (img.shape[0] / centerbias_template.shape[0], img.shape[1] / centerbias_template.shape[1]), order=0, mode='nearest')
centerbias -= logsumexp(centerbias)
centerbias_tensors.append(torch.tensor(centerbias).to(DEVICE))
# Set img_width and img_height
img_widths.append(img.shape[1])
# rescale to match image size
# centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')
# # renormalize log density
# centerbias -= logsumexp(centerbias)
# image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)
# centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)
with torch.no_grad():
# Process the batch of images in one forward pass
log_density_predictions = model(image_batch, torch.stack(centerbias_tensors))
# log_density_prediction = model(image_tensor, centerbias_tensor)
# saliency_map = cv2.resize(log_density_prediction.detach().cpu().numpy()[0, 0], (img_width, img_height))
saliency_maps = []
for i in range(len(images)):
saliency_map = cv2.resize(log_density_predictions[i, 0].cpu().numpy(), (img_widths[i], img_widths[i]))
saliency_map = cv2.normalize(saliency_map, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1)
saliency_map = cv2.GaussianBlur(saliency_map, (31, 31), 10)
saliency_map = saliency_map // 16
saliency_maps.append(saliency_map)
return saliency_maps
# def return_itti_saliency(img):
# '''
# Takes an image img as input and calculates the saliency map using the
# Itti's Saliency Map Generator. It returns the saliency map.
# '''
# img_width, img_height = img.shape[1], img.shape[0]
# sm = pySaliencyMap.pySaliencyMap(img_width, img_height)
# saliency_map = sm.SMGetSM(img)
# # Scale pixel values to 0-255 instead of float (approx 0, hence black image)
# # https://stackoverflow.com/questions/48331211/how-to-use-cv2-imshow-correctly-for-the-float-image-returned-by-cv2-distancet/48333272
# saliency_map = cv2.normalize(saliency_map, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1)
# return saliency_map
# Saliency Ranking
def calculate_pixel_frequency(img) -> dict:
'''
Calculates the frequency of each pixel value in the image img and
returns a dictionary containing the pixel frequencies.
'''
flt = img.flatten()
unique, counts = np.unique(flt, return_counts=True)
pixels_frequency = dict(zip(unique, counts))
return pixels_frequency
def calculate_score(H, sum, ds, cb, w):
'''
Calculates the saliency score of an image img using the entropy H, depth score ds, centre-bias cb and weights w. It returns the saliency score.
'''
# Normalise H
# H = (H - 0) / (math.log(2, 256) - 0)
# H = wth root of H
H = H ** w[0]
if sum > 0:
sum = np.log(sum)
sum = sum ** w[1]
ds = ds ** w[2]
cb = (cb + 1) ** w[3]
return H + sum + ds + cb
def calculate_entropy(img, w, dw) -> float:
'''
Calculates the entropy of an image img using the given weights w and
depth weights dw. It returns the entropy value.
'''
flt = img.flatten()
# c = flt.shape[0]
total_pixels = 0
t_prob = 0
# sum_of_probs = 0
entropy = 0
wt = w * 10
# if imgD=None then proceed normally
# else calculate its frequency and find max
# use this max value as a weight in entropy
pixels_frequency = calculate_pixel_frequency(flt)
total_pixels = sum(pixels_frequency.values())
for px in pixels_frequency:
t_prob = pixels_frequency[px] / total_pixels
if t_prob != 0:
entropy += (t_prob * math.log((1 / t_prob), 2))
# entropy = entropy * wt * dw
return entropy
def find_most_salient_segment(segments, kernel, dws):
'''
Finds the most salient segment among the provided segments using a
given kernel and depth weights. It returns the maximum entropy value
and the index of the most salient segment.
'''
# max_entropy = 0
max_score = 0
index = 0
i = 0
for segment in segments:
temp_entropy = calculate_entropy(segment, kernel[i], dws[i])
# Normalise semgnet bweetn 0 and 255
segment = cv2.normalize(segment, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1)
temp_sum = np.sum(segment)
# temp_tup = (i, temp_entropy)
# segments_entropies.append(temp_tup)
w = WEIGHTS
temp_score = calculate_score(temp_entropy, temp_sum, dws[i], kernel[i], w)
temp_tup = (i, temp_score, temp_entropy ** w[0], temp_sum ** w[1], (kernel[i] + 1) ** w[2], dws[i] ** w[3])
# segments_scores.append((i, temp_score))
segments_scores.append(temp_tup)
# if temp_entropy > max_entropy:
# max_entropy = temp_entropy
# index = i
if temp_score > max_score:
max_score = temp_score
index = i
i += 1
# return max_entropy, index
return max_score, index
def make_gaussian(size, fwhm=10, center=None):
'''
Generates a 2D Gaussian kernel with the specified size and full-width-half-maximum (fwhm). It returns the Gaussian kernel.
size: length of a side of the square
fwhm: full-width-half-maximum, which can be thought of as an effective
radius.
https://gist.github.com/andrewgiessel/4635563
'''
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
if center is None:
x0 = y0 = size // 2
else:
x0 = center[0]
y0 = center[1]
return np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / fwhm ** 2)
def gen_depth_weights(d_segments, depth_map) -> list:
'''
Generates depth weights for the segments based on the depth map. It
returns a list of depth weights.
'''
hist_d, _ = np.histogram(depth_map, 256, [0, 256])
# Get first non-zero index
first_nz = next((i for i, x in enumerate(hist_d) if x), None)
# Get last non-zero index
rev = (len(hist_d) - idx for idx, item in enumerate(reversed(hist_d), 1) if item)
last_nz = next(rev, default=None)
mid = (first_nz + last_nz) / 2
for seg in d_segments:
hist, _ = np.histogram(seg, 256, [0, 256])
dw = 0
ind = 0
for s in hist:
if ind > mid:
dw = dw + (s * 1)
ind = ind + 1
dws.append(dw)
return dws
def gen_blank_depth_weight(d_segments):
'''
Generates blank depth weights for the segments. It returns a list of
depth weights.
'''
for _ in d_segments:
dw = 1
dws.append(dw)
return dws
# def generate_heatmap(img, mode, sorted_seg_scores, segments_coords) -> tuple:
# '''
# Generates a heatmap overlay on the input image img based on the
# provided sorted segment scores. The mode parameter determines the color
# scheme of the heatmap. It returns the image with the heatmap overlay
# and a list of segment scores.
# mode: 0 for white grid, 1 for color-coded grid
# '''
# font = cv2.FONT_HERSHEY_SIMPLEX
# # print_index = 0
# print_index = len(sorted_seg_scores) - 1
# set_value = int(0.25 * len(sorted_seg_scores))
# color = (0, 0, 0)
# max_x = 0
# max_y = 0
# overlay = np.zeros_like(img, dtype=np.uint8)
# text_overlay = np.zeros_like(img, dtype=np.uint8)
# sara_list_out = []
# for ent in reversed(sorted_seg_scores):
# quartile = 0
# if mode == 0:
# color = (255, 255, 255)
# t = 4
# elif mode == 1:
# if print_index + 1 <= set_value:
# color = (0, 0, 255, 255)
# t = 2
# quartile = 1
# elif print_index + 1 <= set_value * 2:
# color = (0, 128, 255, 192)
# t = 4
# quartile = 2
# elif print_index + 1 <= set_value * 3:
# color = (0, 255, 255, 128)
# t = 4
# t = 6
# quartile = 3
# # elif print_index + 1 <= set_value * 4:
# # color = (0, 250, 0, 64)
# # t = 8
# # quartile = 4
# else:
# color = (0, 250, 0, 64)
# t = 8
# quartile = 4
# x1 = segments_coords[ent[0]][1]
# y1 = segments_coords[ent[0]][2]
# x2 = segments_coords[ent[0]][3]
# y2 = segments_coords[ent[0]][4]
# if x2 > max_x:
# max_x = x2
# if y2 > max_y:
# max_y = y2
# x = int((x1 + x2) / 2)
# y = int((y1 + y2) / 2)
# # fill rectangle
# cv2.rectangle(overlay, (x1, y1), (x2, y2), color, -1)
# cv2.rectangle(overlay, (x1, y1), (x2, y2), (0, 0, 0), 1)
# # put text in the middle of the rectangle
# # white text
# cv2.putText(text_overlay, str(print_index), (x - 5, y),
# font, .4, (255, 255, 255), 1, cv2.LINE_AA)
# # Index, rank, score, entropy, entropy_sum, centre_bias, depth, quartile
# sara_tuple = (ent[0], print_index, ent[1], ent[2], ent[3], ent[4], ent[5], quartile)
# sara_list_out.append(sara_tuple)
# print_index -= 1
# # crop the overlay to up to x2 and y2
# overlay = overlay[0:max_y, 0:max_x]
# text_overlay = text_overlay[0:max_y, 0:max_x]
# img = img[0:max_y, 0:max_x]
# img = cv2.addWeighted(overlay, 0.3, img, 0.7, 0, img)
# img[text_overlay > 128] = text_overlay[text_overlay > 128]
# return img, sara_list_out
def generate_heatmap(img, sorted_seg_scores, segments_coords, mode=1) -> tuple:
'''
Generates a more vibrant heatmap overlay on the input image img based on the
provided sorted segment scores. It returns the image with the heatmap overlay
and a list of segment scores with quartile information.
mode: 0 for white grid, 1 for color-coded grid, 2 for heatmap to be used as a feature
'''
alpha =0.3
if mode == 2:
font = cv2.FONT_HERSHEY_SIMPLEX
print_index = len(sorted_seg_scores) - 1
set_value = int(0.25 * len(sorted_seg_scores))
max_x = 0
max_y = 0
overlay = np.zeros_like(img, dtype=np.uint8)
text_overlay = np.zeros_like(img, dtype=np.uint8)
sara_list_out = []
scores = [score[1] for score in sorted_seg_scores]
min_score = min(scores)
max_score = max(scores)
# Choose a colormap from matplotlib
colormap = plt.get_cmap('jet') # 'jet', 'viridis', 'plasma', 'magma', 'cividis, jet_r, viridis_r, plasma_r, magma_r, cividis_r
for ent in reversed(sorted_seg_scores):
score = ent[1]
normalized_score = (score - min_score) / (max_score - min_score)
color_weight = normalized_score * score # Weighted color based on the score
color = np.array(colormap(normalized_score)[:3]) * 255 #* color_weight
x1 = segments_coords[ent[0]][1]
y1 = segments_coords[ent[0]][2]
x2 = segments_coords[ent[0]][3]
y2 = segments_coords[ent[0]][4]
if x2 > max_x:
max_x = x2
if y2 > max_y:
max_y = y2
x = int((x1 + x2) / 2)
y = int((y1 + y2) / 2)
# fill rectangle
cv2.rectangle(overlay, (x1, y1), (x2, y2), color, -1)
# black border
# cv2.rectangle(overlay, (x1, y1), (x2, y2), (0, 0, 0), 1)
# white text
# cv2.putText(text_overlay, str(print_index), (x - 5, y),
# font, .4, (255, 255, 255), 1, cv2.LINE_AA)
# Determine quartile based on print_index
if print_index + 1 <= set_value:
quartile = 1
elif print_index + 1 <= set_value * 2:
quartile = 2
elif print_index + 1 <= set_value * 3:
quartile = 3
else:
quartile = 4
sara_tuple = (ent[0], print_index, ent[1], ent[2], ent[3], ent[4], ent[5], quartile)
sara_list_out.append(sara_tuple)
print_index -= 1
overlay = overlay[0:max_y, 0:max_x]
text_overlay = text_overlay[0:max_y, 0:max_x]
img = img[0:max_y, 0:max_x]
# Create a blank grayscale image with the same dimensions as the original image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.merge([gray, gray, gray])
gray = cv2.addWeighted(overlay, alpha, gray, 1-alpha, 0, gray)
gray[text_overlay > 128] = text_overlay[text_overlay > 128]
return gray, sara_list_out
else:
font = cv2.FONT_HERSHEY_SIMPLEX
# print_index = 0
print_index = len(sorted_seg_scores) - 1
set_value = int(0.25 * len(sorted_seg_scores))
color = (0, 0, 0)
max_x = 0
max_y = 0
overlay = np.zeros_like(img, dtype=np.uint8)
text_overlay = np.zeros_like(img, dtype=np.uint8)
sara_list_out = []
for ent in reversed(sorted_seg_scores):
quartile = 0
if mode == 0:
color = (255, 255, 255)
t = 4
elif mode == 1:
if print_index + 1 <= set_value:
color = (0, 0, 255, 255)
t = 2
quartile = 1
elif print_index + 1 <= set_value * 2:
color = (0, 128, 255, 192)
t = 4
quartile = 2
elif print_index + 1 <= set_value * 3:
color = (0, 255, 255, 128)
t = 4
t = 6
quartile = 3
# elif print_index + 1 <= set_value * 4:
# color = (0, 250, 0, 64)
# t = 8
# quartile = 4
else:
color = (0, 250, 0, 64)
t = 8
quartile = 4
x1 = segments_coords[ent[0]][1]
y1 = segments_coords[ent[0]][2]
x2 = segments_coords[ent[0]][3]
y2 = segments_coords[ent[0]][4]
if x2 > max_x:
max_x = x2
if y2 > max_y:
max_y = y2
x = int((x1 + x2) / 2)
y = int((y1 + y2) / 2)
# fill rectangle
cv2.rectangle(overlay, (x1, y1), (x2, y2), color, -1)
cv2.rectangle(overlay, (x1, y1), (x2, y2), (0, 0, 0), 1)
# put text in the middle of the rectangle
# white text
cv2.putText(text_overlay, str(print_index), (x - 5, y),
font, .4, (255, 255, 255), 1, cv2.LINE_AA)
# Index, rank, score, entropy, entropy_sum, centre_bias, depth, quartile
sara_tuple = (ent[0], print_index, ent[1], ent[2], ent[3], ent[4], ent[5], quartile)
sara_list_out.append(sara_tuple)
print_index -= 1
# crop the overlay to up to x2 and y2
overlay = overlay[0:max_y, 0:max_x]
text_overlay = text_overlay[0:max_y, 0:max_x]
img = img[0:max_y, 0:max_x]
img = cv2.addWeighted(overlay, 0.3, img, 0.7, 0, img)
img[text_overlay > 128] = text_overlay[text_overlay > 128]
return img, sara_list_out
def generate_sara(tex, tex_segments, mode=2):
'''
Generates the SaRa (Salient Region Annotation) output by calculating
saliency scores for the segments of the given texture image tex. It
returns the texture image with the heatmap overlay and a list of
segment scores.
'''
gaussian_kernel_array = make_gaussian(seg_dim)
gaussian1d = gaussian_kernel_array.ravel()
dws = gen_blank_depth_weight(tex_segments)
max_h, index = find_most_salient_segment(tex_segments, gaussian1d, dws)
# dict_entropies = dict(segments_entropies)
# segments_scores list with 5 elements, use index as key for dict and store rest as list of index
dict_scores = {}
for segment in segments_scores:
# Index: score, entropy, sum, depth, centre-bias
dict_scores[segment[0]] = [segment[1], segment[2], segment[3], segment[4], segment[5]]
# sorted_entropies = sorted(dict_entropies.items(),
# key=operator.itemgetter(1), reverse=True)
# sorted_scores = sorted(dict_scores.items(),
# key=operator.itemgetter(1), reverse=True)
# Sort by first value in value list
sorted_scores = sorted(dict_scores.items(), key=lambda x: x[1][0], reverse=True)
# flatten
sorted_scores = [[i[0], i[1][0], i[1][1], i[1][2], i[1][3], i[1][4]] for i in sorted_scores]
# tex_out, sara_list_out = generate_heatmap(
# tex, 1, sorted_entropies, segments_coords)
tex_out, sara_list_out = generate_heatmap(
tex, sorted_scores, segments_coords, mode = mode)
sara_list_out = list(reversed(sara_list_out))
return tex_out, sara_list_out
def return_sara(input_img, grid, generator='itti', saliency_map=None, mode = 2):
'''
Computes the SaRa output for the given input image. It uses the
generate_sara function internally. It returns the SaRa output image and
a list of segment scores.
'''
global seg_dim
seg_dim = grid
if saliency_map is None:
saliency_map = return_saliency(input_img, generator)
tex_segments = generate_segments(saliency_map, seg_dim)
# tex_segments = generate_segments(input_img, seg_dim)
sara_output, sara_list_output = generate_sara(input_img, tex_segments, mode=mode)
return sara_output, sara_list_output
def mean_squared_error(image_a, image_b) -> float:
'''
Calculates the Mean Squared Error (MSE), i.e. sum of squared
differences between two images image_a and image_b. It returns the MSE
value.
NOTE: The two images must have the same dimension
'''
err = np.sum((image_a.astype('float') - image_b.astype('float')) ** 2)
err /= float(image_a.shape[0] * image_a.shape[1])
return err
def reset():
'''
Resets all global variables to their default values.
'''
# global segments_entropies, segments_scores, segments_coords, seg_dim, segments, gt_segments, dws, sara_list
global segments_scores, segments_coords, seg_dim, segments, gt_segments, dws, sara_list
# segments_entropies = []
segments_scores = []
segments_coords = []
seg_dim = 0
segments = []
gt_segments = []
dws = []
sara_list = []
def resize_based_on_important_ranks(img, sara_info, grid_size, rate=0.3):
def generate_segments(image, seg_count) -> dict:
"""
Function to generate segments of an image
Args:
image: input image
seg_count: number of segments to generate
Returns:
segments: dictionary of segments
"""
# Initializing segments dictionary
segments = {}
# Initializing segment index and segment count
segment_count = seg_count
index = 0
# Retrieving image width and height
h, w = image.shape[:2]
# Calculating width and height intervals for segments from the segment count
w_interval = w // segment_count
h_interval = h // segment_count
# Iterating through the image and generating segments
for i in range(segment_count):
for j in range(segment_count):
# Calculating segment coordinates
x1, y1 = j * w_interval, i * h_interval
x2, y2 = x1 + w_interval, y1 + h_interval
# Adding segment coordinates to segments dictionary
segments[index] = (x1, y1, x2, y2)
# Incrementing segment index
index += 1
# Returning segments dictionary
return segments
# Retrieving important ranks from SaRa
sara_dict = {
info[0]: {
'score': info[2],
'index': info[1]
}
for info in sara_info[1]
}
# Sorting important ranks by score
sorted_sara_dict = sorted(sara_dict.items(), key=lambda item: item[1]['score'], reverse=True)
# Generating segments
index_info = generate_segments(img, grid_size)
# Initializing most important ranks image
most_imp_ranks = np.zeros_like(img)
# Calculating maximum rank
max_rank = int(grid_size * grid_size * rate)
count = 0
# Iterating through important ranks and adding them to most important ranks image
for rank, info in sorted_sara_dict:
# Checking if rank is within maximum rank
if count <= max_rank:
# Retrieving segment coordinates
coords = index_info[rank]
# Adding segment to most important ranks image by making it white
most_imp_ranks[coords[1]:coords[3], coords[0]:coords[2]] = 255
# Incrementing count
count += 1
else:
break
# Retrieving coordinates of most important ranks
coords = np.argwhere(most_imp_ranks == 255)
# Checking if no important ranks were found and returning original image
if coords.size == 0:
return img , most_imp_ranks, [0, 0, img.shape[0], img.shape[1]]
# Cropping image based on most important ranks
x0, y0 = coords.min(axis=0)[:2]
x1, y1 = coords.max(axis=0)[:2] + 1
cropped_img = img[x0:x1, y0:y1]
return cropped_img , most_imp_ranks, [x0, y0, x1, y1]
def sara_resize(img, sara_info, grid_size, rate=0.3, iterations=2):
"""
Function to resize an image based on SaRa
Args:
img: input image
sara_info: SaRa information
grid_size: size of the grid
rate: rate of important ranks
iterations: number of iterations to resize
Returns:
img: resized image
"""
# Iterating through iterations
for _ in range(iterations):
# Resizing image based on important ranks
img, most_imp_ranks, coords = resize_based_on_important_ranks(img, sara_info, grid_size, rate=rate)
# Returning resized image
return img, most_imp_ranks, coords
def plot_3D(img, sara_info, grid_size, rate=0.3):
def generate_segments(image, seg_count) -> dict:
"""
Function to generate segments of an image
Args:
image: input image
seg_count: number of segments to generate
Returns:
segments: dictionary of segments
"""
# Initializing segments dictionary
segments = {}
# Initializing segment index and segment count
segment_count = seg_count
index = 0
# Retrieving image width and height
h, w = image.shape[:2]
# Calculating width and height intervals for segments from the segment count
w_interval = w // segment_count
h_interval = h // segment_count
# Iterating through the image and generating segments
for i in range(segment_count):
for j in range(segment_count):
# Calculating segment coordinates
x1, y1 = j * w_interval, i * h_interval
x2, y2 = x1 + w_interval, y1 + h_interval
# Adding segment coordinates to segments dictionary
segments[index] = (x1, y1, x2, y2)
# Incrementing segment index
index += 1
# Returning segments dictionary
return segments
# Extracting heatmap from SaRa information
heatmap = sara_info[0]
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
# Retrieving important ranks from SaRa
sara_dict = {
info[0]: {
'score': info[2],
'index': info[1]
}
for info in sara_info[1]
}
# Sorting important ranks by score
sorted_sara_dict = sorted(sara_dict.items(), key=lambda item: item[1]['score'], reverse=True)
# Generating segments
index_info = generate_segments(img, grid_size)
# Calculating maximum rank
max_rank = int(grid_size * grid_size * rate)
count = 0
# Normalizing heatmap
heatmap = heatmap.astype(float) / 255.0
# Creating a figure
fig = plt.figure(figsize=(20, 10))
# Creating a 3D plot
ax = fig.add_subplot(111, projection='3d')
# Defining the x and y coordinates for the heatmap
x_coords = np.linspace(0, 1, heatmap.shape[1])
y_coords = np.linspace(0, 1, heatmap.shape[0])
x, y = np.meshgrid(x_coords, y_coords)
# Defining the z-coordinate for the heatmap (a constant, such as -5)
z = np.asarray([[-10] * heatmap.shape[1]] * heatmap.shape[0])
# Plotting the heatmap as a texture on the xy-plane
ax.plot_surface(x, y, z, facecolors=heatmap, rstride=1, cstride=1, shade=False)
# Initializing the single distribution array
single_distribution = np.asarray([[1e-6] * heatmap.shape[1]] * heatmap.shape[0], dtype=float)
importance = 0
# Creating the single distribution by summing up Gaussian distributions for each segment
for rank, info in sorted_sara_dict:
# Retrieving segment coordinates
coords = index_info[rank]
# Creating a Gaussian distribution for the whole segment, i.e., arrange all the pixels in the segment in a 3D Gaussian distribution
x_temp = np.linspace(0, 1, coords[2] - coords[0])
y_temp = np.linspace(0, 1, coords[3] - coords[1])
# Creating a meshgrid
x_temp, y_temp = np.meshgrid(x_temp, y_temp)
# Calculating the Gaussian distribution
distribution = np.exp(-((x_temp - 0.5) ** 2 + (y_temp - 0.5) ** 2) / 0.1) * ((grid_size ** 2 - importance) / grid_size ** 2) # (constant)
# Adding the Gaussian distribution to the single distribution
single_distribution[coords[1]:coords[3], coords[0]:coords[2]] += distribution
# Incrementing importance
importance +=1
# Based on the rate, calculating the minimum number for the most important ranks
min_rank = int(grid_size * grid_size * rate)
# Calculating the scale factor for the single distribution
scale_factor = ((grid_size ** 2 - min_rank) / grid_size ** 2) * 5
# Scaling the distribution
single_distribution *= scale_factor
# Retrieving the max and min values of the single distribution
max_value = np.max(single_distribution)
min_value = np.min(single_distribution)
# Calculating the hyperplane
hyperplane = np.asarray([[(max_value - min_value)* (1 - rate) + min_value] * heatmap.shape[1]] * heatmap.shape[0])
# Plotting a horizontal plane at the minimum rank level (hyperplane)
ax.plot_surface(x, y, hyperplane, rstride=1, cstride=1, color='red', alpha=0.3, shade=False)
# Plotting the single distribution as a wireframe on the xy-plane
ax.plot_surface(x, y, single_distribution, rstride=1, cstride=1, color='blue', shade=False)
# Setting the title
ax.set_title('SaRa 3D Heatmap Plot', fontsize=20)
# Setting the labels
ax.set_xlabel('X', fontsize=16)
ax.set_ylabel('Y', fontsize=16)
ax.set_zlabel('Z', fontsize=16)
# Setting the viewing angle to look from the y, x diagonal position
ax.view_init(elev=30, azim=45) # Adjust the elevation (elev) and azimuth (azim) angles as needed
# ax.view_init(elev=0, azim=0) # View from the top
# Adding legend to the plot
# Creating Line2D objects for the legend
legend_elements = [Line2D([0], [0], color='blue', lw=4, label='Rank Distribution'),
Line2D([0], [0], color='red', lw=4, label='Threshold Hyperplane ({}%)'.format(rate*100)),
Line2D([0], [0], color='green', lw=4, label='SaRa Heatmap')]
# Creating the legend
plt.subplots_adjust(right=0.5)
ax.legend(handles=legend_elements, fontsize=16, loc='center left', bbox_to_anchor=(1, 0.5))
# Inverting the x axis
ax.invert_xaxis()
# Removing labels
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
# Showing the plot
plt.show()
|