Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,435 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import collections
import datetime
import io
import pathlib
import uuid
import os
import numpy as np
from gym.spaces import Dict
import random
from torch.utils.data import IterableDataset, DataLoader
import torch
import tools.utils as utils
import traceback
from pathlib import Path
from tqdm import tqdm
SIG_FAILURE = -1
def get_length(filename):
if "-" in str(filename):
length = int(str(filename).split('-')[-1])
else:
length = int(str(filename).split('_')[-1])
return length
def get_idx(filename):
if "-" in str(filename):
length = int(str(filename).split('-')[0])
else:
length = int(str(filename).split('_')[0])
return length
def on_fn(): return collections.defaultdict(list) # this function is to avoid lambdas
class ReplayBuffer(IterableDataset):
def __init__(
self, data_specs, meta_specs, directory, length=20, capacity=0, ongoing=False, minlen=1, maxlen=0,
prioritize_ends=False, device='cuda', load_first=False, save_episodes=True, ignore_extra_keys=False, load_recursive=False, min_t_sampling=0, **kwargs):
self._directory = pathlib.Path(directory).expanduser()
self._directory.mkdir(parents=True, exist_ok=True)
self._capacity = capacity
self._ongoing = ongoing
self._minlen = minlen
self._maxlen = maxlen
self._prioritize_ends = prioritize_ends
self._ignore_extra_keys = ignore_extra_keys
self._min_t_sampling = min_t_sampling
# self._random = np.random.RandomState()
# filename -> key -> value_sequence
self._save_episodes = save_episodes
self._last_added_idx = 0
self._episode_lens = np.array([])
self._complete_eps = {}
self._data_specs = data_specs
self._meta_specs = meta_specs
for spec_group in [data_specs, meta_specs]:
for spec in spec_group:
if type(spec) in [dict, Dict]:
for k,v in spec.items():
self._complete_eps[k] = []
else:
self._complete_eps[spec.name] = []
# load episodes
if type(directory) == str:
directory = Path(directory)
self._loaded_episodes = 0
self._loaded_steps = 0
for f in tqdm(load_filenames(self._directory, capacity, minlen, load_first=load_first, load_recursive=load_recursive)):
self.store_episode(filename=f)
try:
self._total_episodes, self._total_steps = count_episodes(directory)
except:
print("Couldn't count episodes")
print("Loaded episodes: ", self._loaded_episodes)
print("Loaded steps: ", self._loaded_steps)
self._total_episodes, self._total_steps = self._loaded_episodes, self._loaded_steps
# worker -> key -> value_sequence
self._length = length
self._ongoing_eps = collections.defaultdict(on_fn)
self.device = device
try:
assert self._minlen <= self._length <= self._maxlen
except:
print("Sampling sequences with fixed length ", length)
self._minlen = self._maxlen = self._length = length
def __len__(self):
return self._total_steps
def preallocate_memory(self, max_size):
self._preallocated_mem = collections.defaultdict(list)
for spec in self._data_specs:
if type(spec) in [dict, Dict]:
for k,v in spec.items():
for _ in range(max_size):
self._preallocated_mem[k].append(np.empty(list(v.shape), v.dtype))
self._preallocated_mem[k][-1].fill(0.)
else:
for _ in range(max_size):
self._preallocated_mem[spec.name].append(np.empty(list(v.shape), v.dtype))
self._preallocated_mem[spec.name][-1].fill(0.)
@property
def stats(self):
return {
'total_steps': self._total_steps,
'total_episodes': self._total_episodes,
'loaded_steps': self._loaded_steps,
'loaded_episodes': self._loaded_episodes,
}
def add(self, time_step, meta, idx=0):
### Useful if there was any failure in the environment
if time_step == SIG_FAILURE:
episode = self._ongoing_eps[idx]
episode.clear()
print("Discarding episode from process", idx)
return
####
episode = self._ongoing_eps[idx]
def add_to_episode(name, data, spec):
value = data[name]
if np.isscalar(value):
value = np.full(spec.shape, value, spec.dtype)
assert spec.shape == value.shape and spec.dtype == value.dtype, f"for ({name}) expected {spec.dtype, spec.shape, }), received ({value.dtype, value.shape, })"
### Deallocate preallocated memory
if getattr(self, '_preallocated_mem', False):
if len(self._preallocated_mem[name]) > 0:
tmp = self._preallocated_mem[name].pop()
del tmp
else:
# Out of pre-allocated memory
del self._preallocated_mem
###
episode[name].append(value)
for spec in self._data_specs:
if type(spec) in [dict, Dict]:
for k,v in spec.items():
add_to_episode(k, time_step, v)
else:
add_to_episode(spec.name, time_step, spec)
for spec in self._meta_specs:
if type(spec) in [dict, Dict]:
for k,v in spec.items():
add_to_episode(k, meta, v)
else:
add_to_episode(spec.name, meta, spec)
if type(time_step) in [dict, Dict]:
if time_step['is_last']:
self.add_episode(episode)
episode.clear()
else:
if time_step.last():
self.add_episode(episode)
episode.clear()
def add_episode(self, episode):
length = eplen(episode)
if length < self._minlen:
print(f'Skipping short episode of length {length}.')
return
self._total_steps += length
self._total_episodes += 1
episode = {key: convert(value) for key, value in episode.items()}
if self._save_episodes:
filename = self.save_episode(self._directory, episode)
self.store_episode(episode=episode)
def store_episode(self, filename=None, episode=None, run_checks=True):
if filename is not None:
episode = load_episode(filename)
if len(episode['reward'].shape) == 1:
episode['reward'] = episode['reward'].reshape(-1, 1)
if 'discount' not in episode:
episode['discount'] = (1 - episode['is_terminal']).reshape(-1, 1).astype(np.float32)
#
if run_checks:
for spec_set in [self._data_specs, self._meta_specs]:
for spec in spec_set:
if type(spec) in [dict, Dict]:
for k,v in spec.items():
value = episode[k][0]
assert v.shape == value.shape and v.dtype == value.dtype, f"for ({k}) expected {v.dtype, v.shape, }), received ({value.dtype, value.shape, })"
else:
value = episode[spec.name][0]
assert spec.shape == value.shape and spec.dtype == value.dtype, f"for ({spec.name}) expected {spec.dtype, spec.shape, }), received ({value.dtype, value.shape, })"
if not episode:
return False
length = eplen(episode)
if run_checks:
for k in episode:
assert len(episode[k]) == length, f'Found {episode[k].shape} VS eplen: {length}'
# Enforce limit
while self._loaded_steps + length > self._capacity:
for k in self._complete_eps:
self._complete_eps[k].pop(0)
removed_len, self._episode_lens = self._episode_lens[0], self._episode_lens[1:]
self._loaded_steps -= removed_len
self._loaded_episodes -= 1
# add episode
for k,v in episode.items():
if k not in self._complete_eps:
if self._ignore_extra_keys: continue
else: raise KeyError("Extra key ", k)
self._complete_eps[k].append(v)
self._episode_lens = np.append(self._episode_lens, length)
self._loaded_steps += length
self._loaded_episodes += 1
return True
def __iter__(self):
while True:
sequences, batch_size, batch_length = self._loaded_episodes, self.batch_size, self._length
b_indices = np.random.randint(0, sequences, size=batch_size)
t_indices = np.random.randint(np.zeros(batch_size) + self._min_t_sampling, self._episode_lens[b_indices]-batch_length+1, size=batch_size)
t_ranges = np.repeat( np.expand_dims(np.arange(0, batch_length,), 0), batch_size, axis=0) + np.expand_dims(t_indices, 1)
chunk = {}
for k in self._complete_eps:
chunk[k] = np.stack([self._complete_eps[k][b][t] for b,t in zip(b_indices, t_ranges)])
for k in chunk:
chunk[k] = torch.as_tensor(chunk[k], device=self.device)
yield chunk
@utils.retry
def save_episode(self, directory, episode):
idx = self._total_episodes
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
identifier = str(uuid.uuid4().hex)
length = eplen(episode)
filename = directory / f'{idx}-{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
return filename
def load_episode(filename):
try:
with filename.open('rb') as f:
episode = np.load(f, allow_pickle=True)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f'Could not load episode {str(filename)}: {e}')
return False
return episode
def count_episodes(directory):
filenames = list(directory.glob('*.npz'))
num_episodes = len(filenames)
if num_episodes == 0 : return 0, 0
if len(filenames) > 0 and "-" in str(filenames[0]):
num_steps = sum(int(str(n).split('-')[-1][:-4]) - 1 for n in filenames)
last_episode = sorted(list(int(n.stem.split('-')[0]) for n in filenames))[-1]
else:
num_steps = sum(int(str(n).split('_')[-1][:-4]) - 1 for n in filenames)
last_episode = sorted(list(int(n.stem.split('_')[0]) for n in filenames))[-1]
return last_episode, num_steps
def load_filenames(directory, capacity=None, minlen=1, load_first=False, load_recursive=False):
# The returned directory from filenames to episodes is guaranteed to be in
# temporally sorted order.
if load_recursive:
filenames = sorted(directory.glob('**/*.npz'))
else:
filenames = sorted(directory.glob('*.npz'))
if capacity:
num_steps = 0
num_episodes = 0
ordered_filenames = filenames if load_first else reversed(filenames)
for filename in ordered_filenames:
if "-" in str(filename):
length = int(str(filename).split('-')[-1][:-4])
else:
length = int(str(filename).split('_')[-1][:-4])
num_steps += length
num_episodes += 1
if num_steps >= capacity:
break
if load_first:
filenames = filenames[:num_episodes]
else:
filenames = filenames[-num_episodes:]
return filenames
def convert(value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
return value.astype(np.float32)
elif np.issubdtype(value.dtype, np.signedinteger):
return value.astype(np.int32)
elif np.issubdtype(value.dtype, np.uint8):
return value.astype(np.uint8)
return value
def eplen(episode):
return len(episode['action'])
def make_replay_loader(buffer, batch_size,):
buffer.batch_size = batch_size
return DataLoader(buffer,
batch_size=None,
# NOTE: do not use any workers,
# as they don't get copies of the replay buffer (requires different implementation)
) |