File size: 7,628 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pathlib import Path \n",
    "import os\n",
    "import glob\n",
    "import json\n",
    "import sys\n",
    "sys.path.append(str(Path(os.path.abspath('')).parent))\n",
    "\n",
    "import torch\n",
    "import torch.distributions as D\n",
    "import numpy as np\n",
    "import torch.nn.functional as F\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.cm as cm\n",
    "import matplotlib.animation as animation\n",
    "\n",
    "import wandb\n",
    "from tqdm import tqdm\n",
    "api = wandb.Api()\n",
    "\n",
    "agent_path = Path(os.path.abspath('')).parent / 'models' / 'genrl_stickman_500k_2.pt'\n",
    "print(\"Model path\", agent_path)\n",
    "\n",
    "agent = torch.load(agent_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.genrl_utils import ViCLIPGlobalInstance, DOMAIN2PREDICATES\n",
    "model_name = getattr(agent.cfg, 'viclip_model', 'viclip')\n",
    "# Get ViCLIP\n",
    "if 'viclip_global_instance' not in locals() or model_name != viclip_global_instance._model:\n",
    "    viclip_global_instance = ViCLIPGlobalInstance(model_name)\n",
    "    if not viclip_global_instance._instantiated:\n",
    "        print(\"Instantiating\")\n",
    "        viclip_global_instance.instantiate()\n",
    "    clip = viclip_global_instance.viclip\n",
    "    tokenizer = viclip_global_instance.viclip_tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import cv2\n",
    "\n",
    "def get_vid_feat(frames, clip):\n",
    "    return clip.get_vid_features(frames,)\n",
    "\n",
    "def _frame_from_video(video):\n",
    "    while video.isOpened():\n",
    "        success, frame = video.read()\n",
    "        if success:\n",
    "            yield frame\n",
    "        else:\n",
    "            break\n",
    "\n",
    "v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)\n",
    "v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)\n",
    "def normalize(data):\n",
    "    return (data/255.0-v_mean)/v_std\n",
    "\n",
    "def denormalize(data):\n",
    "    return (((data * v_std) + v_mean) * 255) \n",
    "\n",
    "def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):\n",
    "    vid_list = [*vid_list[0]]\n",
    "    assert(len(vid_list) >= fnum)\n",
    "    vid_list = [cv2.resize(x, target_size) for x in vid_list]\n",
    "    vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]\n",
    "    vid_tube = np.concatenate(vid_tube, axis=1)\n",
    "    vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))\n",
    "    vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()\n",
    "    return vid_tube\n",
    "\n",
    "\n",
    "def get_video_feat(frames, device=torch.device('cuda'), flip=False):\n",
    "    # Image\n",
    "    if frames.shape[1] == 1:\n",
    "        frames = frames.transpose(1,0,2,3,4).repeat(8, axis=0).transpose(1,0,2,3,4)\n",
    "\n",
    "    # Short video\n",
    "    if frames.shape[1] == 4:\n",
    "        frames = frames.transpose(1,0,2,3,4).repeat(2, axis=0).transpose(1,0,2,3,4)\n",
    "\n",
    "    k = max(frames.shape[1] // 128, 1)\n",
    "    frames = frames[:, ::k]\n",
    "    \n",
    "    # Horizontally flip\n",
    "    if flip:\n",
    "        frames = np.flip(frames, axis=-2)\n",
    "\n",
    "    print(frames.shape,)\n",
    "    chosen_frames = frames[:, :8]\n",
    "    chosen_frames = frames2tensor(chosen_frames, device=device)\n",
    "    vid_feat = get_vid_feat(chosen_frames, clip,)\n",
    "    return vid_feat, chosen_frames\n",
    "\n",
    "VIDEO_PATH = Path(os.path.abspath('')).parent / 'assets' / 'video_samples'\n",
    "video_name = 'headstand.mp4'\n",
    "\n",
    "video_file_path = str(VIDEO_PATH / video_name)\n",
    "print(video_file_path)\n",
    "video = cv2.VideoCapture(video_file_path)\n",
    "frames = np.expand_dims(np.stack([ cv2.cvtColor(x, cv2.COLOR_BGR2RGB) for x in _frame_from_video(video)], axis=0), axis=0)\n",
    "print('Video length:', frames.shape[1])\n",
    "with torch.no_grad():\n",
    "    vid_feat, frames_feat = get_video_feat(frames, flip=False)\n",
    "print(vid_feat.shape)\n",
    "plt.imshow(frames[0,0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "video_embed = vid_feat\n",
    "DENOISE = True\n",
    "\n",
    "T = video_embed.shape[0]\n",
    "\n",
    "from torchvision.transforms import transforms as vision_trans\n",
    "trasnf = vision_trans.Resize(size=(64, 64), interpolation=vision_trans.InterpolationMode.NEAREST)\n",
    "\n",
    "wm = world_model = agent.wm\n",
    "connector = agent.wm.connector\n",
    "decoder = world_model.heads['decoder']\n",
    "n_frames = connector.n_frames\n",
    "\n",
    "\n",
    "with torch.no_grad():\n",
    "    # Get actions\n",
    "    video_embed = video_embed.unsqueeze(1).repeat(1,n_frames, 1).reshape(1, n_frames * T, -1)\n",
    "    action = wm.connector.get_action(video_embed)\n",
    "\n",
    "    # Imagine\n",
    "    prior = wm.connector.video_imagine(video_embed, None, sample=False, reset_every_n_frames=False, denoise=DENOISE)\n",
    "    prior_recon = decoder(wm.decoder_input_fn(prior))['observation'].mean + 0.5\n",
    "\n",
    "    # Plotting video\n",
    "    ims = []\n",
    "    fig, axes = plt.subplots(1, 1, figsize=(4, 8), frameon=False)\n",
    "    fig.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0)\n",
    "    fig.set_size_inches(4,2)\n",
    "\n",
    "    for t in range(prior_recon.shape[1]):\n",
    "        toadd = []\n",
    "        for b in range(prior_recon.shape[0]):\n",
    "            ax = axes\n",
    "            ax.set_axis_off()\n",
    "            img = cv2.resize((np.clip(prior_recon[b, t].cpu().permute(1,2,0), 0, 1).numpy() *255).astype(np.uint8), (224,224))\n",
    "            orig_img = denormalize(frames_feat[b, t].cpu().permute(1,2,0) ).numpy().astype(np.uint8)\n",
    "            frame =  ax.imshow(np.concatenate([orig_img, img], axis=1))   \n",
    "            toadd.append(frame) # add both the image and the text to the list of artists \n",
    "        ims.append(toadd)\n",
    "\n",
    "    anim = animation.ArtistAnimation(fig, ims, interval=700, blit=True, repeat_delay=700, )\n",
    "\n",
    "    # Save GIFs\n",
    "    writer = animation.PillowWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800,)\n",
    "    domain = agent.cfg.task.split('_')[0]\n",
    "    os.makedirs(f'videos/{domain}/video2video', exist_ok=True)\n",
    "    file_path = f'videos/{domain}/video2video/{video_name[:-4].replace(\" \",\"_\")}.gif'\n",
    "    anim.save(file_path, writer=writer, )\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.10 ('base')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "3d597f4c481aa0f25dceb95d2a0067e73c0966dcbd003d741d821a7208527ecf"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}