Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,327 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
# Copyright 2019 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Quadruped Domain."""
import collections
from dm_control.suite import quadruped
from dm_control import mujoco
from dm_control.mujoco.wrapper import mjbindings
from dm_control.rl import control
from dm_control.suite import base
from dm_control.suite import common
from dm_control.utils import containers
from dm_control.utils import rewards
from dm_control.utils import xml_tools
from dm_control.utils import io as resources
from lxml import etree
import numpy as np
from scipy import ndimage
import os
enums = mjbindings.enums
mjlib = mjbindings.mjlib
_DEFAULT_TIME_LIMIT = 20
_CONTROL_TIMESTEP = .02
# Horizontal speeds above which the move reward is 1.
_RUN_SPEED = 5
_WALK_SPEED = 0.5
_JUMP_HEIGHT = 1.0 # -also good for foot up
_LIE_DOWN_HEIGHT = 0.2
_FOOT_DOWN_HEIGHT = 0.2
_FOOT_UP_HEIGHT = 0.8
# Constants related to terrain generation.
_HEIGHTFIELD_ID = 0
_TERRAIN_SMOOTHNESS = 0.15 # 0.0: maximally bumpy; 1.0: completely smooth.
_TERRAIN_BUMP_SCALE = 2 # Spatial scale of terrain bumps (in meters).
# Named model elements.
_TOES = ['toe_front_left', 'toe_back_left', 'toe_back_right', 'toe_front_right']
_WALLS = ['wall_px', 'wall_py', 'wall_nx', 'wall_ny']
def make(task,
task_kwargs=None,
environment_kwargs=None,
visualize_reward=False):
task_kwargs = task_kwargs or {}
if environment_kwargs is not None:
task_kwargs = task_kwargs.copy()
task_kwargs['environment_kwargs'] = environment_kwargs
env = SUITE[task](**task_kwargs)
env.task.visualize_reward = visualize_reward
return env
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
root_dir = os.path.dirname(os.path.dirname(__file__))
xml = resources.GetResource(
os.path.join(root_dir, 'custom_dmc_tasks', 'quadruped.xml'))
return xml, common.ASSETS
def make_model(floor_size=None, terrain=False, rangefinders=False,
walls_and_ball=False):
"""Returns the model XML string."""
root_dir = os.path.dirname(os.path.dirname(__file__))
xml_string = common.read_model(os.path.join(root_dir, 'custom_dmc_tasks', 'quadruped.xml'))
parser = etree.XMLParser(remove_blank_text=True)
mjcf = etree.XML(xml_string, parser)
# Set floor size.
if floor_size is not None:
floor_geom = mjcf.find('.//geom[@name=\'floor\']')
floor_geom.attrib['size'] = f'{floor_size} {floor_size} .5'
# Remove walls, ball and target.
if not walls_and_ball:
for wall in _WALLS:
wall_geom = xml_tools.find_element(mjcf, 'geom', wall)
wall_geom.getparent().remove(wall_geom)
# Remove ball.
ball_body = xml_tools.find_element(mjcf, 'body', 'ball')
ball_body.getparent().remove(ball_body)
# Remove target.
target_site = xml_tools.find_element(mjcf, 'site', 'target')
target_site.getparent().remove(target_site)
# Remove terrain.
if not terrain:
terrain_geom = xml_tools.find_element(mjcf, 'geom', 'terrain')
terrain_geom.getparent().remove(terrain_geom)
# Remove rangefinders if they're not used, as range computations can be
# expensive, especially in a scene with heightfields.
if not rangefinders:
rangefinder_sensors = mjcf.findall('.//rangefinder')
for rf in rangefinder_sensors:
rf.getparent().remove(rf)
return etree.tostring(mjcf, pretty_print=True)
@quadruped.SUITE.add('custom')
def lie_down(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
physics = Physics.from_xml_string(xml_string, common.ASSETS)
task = Stand(goal='lie_down', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@quadruped.SUITE.add('custom')
def two_legs(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
physics = Physics.from_xml_string(xml_string, common.ASSETS)
task = Stand(goal='two_legs', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@quadruped.SUITE.add('custom')
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
physics = Physics.from_xml_string(xml_string, common.ASSETS)
task = Stand(goal='stand', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@quadruped.SUITE.add('custom')
def jump(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
physics = Physics.from_xml_string(xml_string, common.ASSETS)
task = Jump(desired_height=_JUMP_HEIGHT, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@quadruped.SUITE.add('custom')
def roll(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
physics = Physics.from_xml_string(xml_string, common.ASSETS)
task = Roll(desired_speed=_WALK_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@quadruped.SUITE.add('custom')
def roll_fast(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
physics = Physics.from_xml_string(xml_string, common.ASSETS)
task = Roll(desired_speed=_RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
class Physics(mujoco.Physics):
"""Physics simulation with additional features for the Quadruped domain."""
def _reload_from_data(self, data):
super()._reload_from_data(data)
# Clear cached sensor names when the physics is reloaded.
self._sensor_types_to_names = {}
self._hinge_names = []
def _get_sensor_names(self, *sensor_types):
try:
sensor_names = self._sensor_types_to_names[sensor_types]
except KeyError:
[sensor_ids] = np.where(np.in1d(self.model.sensor_type, sensor_types))
sensor_names = [self.model.id2name(s_id, 'sensor') for s_id in sensor_ids]
self._sensor_types_to_names[sensor_types] = sensor_names
return sensor_names
def torso_upright(self):
"""Returns the dot-product of the torso z-axis and the global z-axis."""
return np.asarray(self.named.data.xmat['torso', 'zz'])
def torso_velocity(self):
"""Returns the velocity of the torso, in the local frame."""
return self.named.data.sensordata['velocimeter'].copy()
def com_height(self):
return self.named.data.sensordata['center_of_mass'].copy()[2]
def egocentric_state(self):
"""Returns the state without global orientation or position."""
if not self._hinge_names:
[hinge_ids] = np.nonzero(self.model.jnt_type ==
enums.mjtJoint.mjJNT_HINGE)
self._hinge_names = [self.model.id2name(j_id, 'joint')
for j_id in hinge_ids]
return np.hstack((self.named.data.qpos[self._hinge_names],
self.named.data.qvel[self._hinge_names],
self.data.act))
def toe_positions(self):
"""Returns toe positions in egocentric frame."""
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
torso_pos = self.named.data.xpos['torso']
torso_to_toe = self.named.data.xpos[_TOES] - torso_pos
return torso_to_toe.dot(torso_frame)
def force_torque(self):
"""Returns scaled force/torque sensor readings at the toes."""
force_torque_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_FORCE,
enums.mjtSensor.mjSENS_TORQUE)
return np.arcsinh(self.named.data.sensordata[force_torque_sensors])
def imu(self):
"""Returns IMU-like sensor readings."""
imu_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_GYRO,
enums.mjtSensor.mjSENS_ACCELEROMETER)
return self.named.data.sensordata[imu_sensors]
def rangefinder(self):
"""Returns scaled rangefinder sensor readings."""
rf_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_RANGEFINDER)
rf_readings = self.named.data.sensordata[rf_sensors]
no_intersection = -1.0
return np.where(rf_readings == no_intersection, 1.0, np.tanh(rf_readings))
def origin_distance(self):
"""Returns the distance from the origin to the workspace."""
return np.asarray(np.linalg.norm(self.named.data.site_xpos['workspace']))
def origin(self):
"""Returns origin position in the torso frame."""
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
torso_pos = self.named.data.xpos['torso']
return -torso_pos.dot(torso_frame)
def ball_state(self):
"""Returns ball position and velocity relative to the torso frame."""
data = self.named.data
torso_frame = data.xmat['torso'].reshape(3, 3)
ball_rel_pos = data.xpos['ball'] - data.xpos['torso']
ball_rel_vel = data.qvel['ball_root'][:3] - data.qvel['root'][:3]
ball_rot_vel = data.qvel['ball_root'][3:]
ball_state = np.vstack((ball_rel_pos, ball_rel_vel, ball_rot_vel))
return ball_state.dot(torso_frame).ravel()
def target_position(self):
"""Returns target position in torso frame."""
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
torso_pos = self.named.data.xpos['torso']
torso_to_target = self.named.data.site_xpos['target'] - torso_pos
return torso_to_target.dot(torso_frame)
def ball_to_target_distance(self):
"""Returns horizontal distance from the ball to the target."""
ball_to_target = (self.named.data.site_xpos['target'] -
self.named.data.xpos['ball'])
return np.linalg.norm(ball_to_target[:2])
def self_to_ball_distance(self):
"""Returns horizontal distance from the quadruped workspace to the ball."""
self_to_ball = (self.named.data.site_xpos['workspace']
-self.named.data.xpos['ball'])
return np.linalg.norm(self_to_ball[:2])
def _find_non_contacting_height(physics, orientation, x_pos=0.0, y_pos=0.0):
"""Find a height with no contacts given a body orientation.
Args:
physics: An instance of `Physics`.
orientation: A quaternion.
x_pos: A float. Position along global x-axis.
y_pos: A float. Position along global y-axis.
Raises:
RuntimeError: If a non-contacting configuration has not been found after
10,000 attempts.
"""
z_pos = 0.0 # Start embedded in the floor.
num_contacts = 1
num_attempts = 0
# Move up in 1cm increments until no contacts.
while num_contacts > 0:
try:
with physics.reset_context():
physics.named.data.qpos['root'][:3] = x_pos, y_pos, z_pos
physics.named.data.qpos['root'][3:] = orientation
except control.PhysicsError:
# We may encounter a PhysicsError here due to filling the contact
# buffer, in which case we simply increment the height and continue.
pass
num_contacts = physics.data.ncon
z_pos += 0.01
num_attempts += 1
if num_attempts > 10000:
raise RuntimeError('Failed to find a non-contacting configuration.')
def _common_observations(physics):
"""Returns the observations common to all tasks."""
obs = collections.OrderedDict()
obs['egocentric_state'] = physics.egocentric_state()
obs['torso_velocity'] = physics.torso_velocity()
obs['torso_upright'] = physics.torso_upright()
obs['imu'] = physics.imu()
obs['force_torque'] = physics.force_torque()
return obs
def _lie_down_reward(physics, deviation_angle=0):
"""Returns a reward proportional to how upright the torso is.
Args:
physics: an instance of `Physics`.
deviation_angle: A float, in degrees. The reward is 0 when the torso is
exactly upside-down and 1 when the torso's z-axis is less than
`deviation_angle` away from the global z-axis.
"""
torso = physics.named.data.xpos['torso', 'z']
return rewards.tolerance(
torso,
bounds=(-float('inf'), _LIE_DOWN_HEIGHT),
margin=_LIE_DOWN_HEIGHT * 1.5)
def _two_legs_reward(physics, deviation_angle=0):
"""Returns a reward proportional to how upright the torso is.
Args:
physics: an instance of `Physics`.
deviation_angle: A float, in degrees. The reward is 0 when the torso is
exactly upside-down and 1 when the torso's z-axis is less than
`deviation_angle` away from the global z-axis.
"""
toes = []
for t in ['toe_front_left', 'toe_front_right', 'toe_back_left', 'toe_back_right']:
toe = physics.named.data.xpos[t, 'z']
toes.append(toe)
toes = sorted(toes)
min_toes = sum(toes[:2]) / 2
max_toes = sum(toes[2:]) / 2
toes_up = rewards.tolerance(
max_toes,
bounds=(_FOOT_UP_HEIGHT, float('inf')),
margin=_FOOT_UP_HEIGHT // 2)
toes_down = rewards.tolerance(
min_toes,
bounds=(-float('inf'), _FOOT_DOWN_HEIGHT),
margin=_FOOT_DOWN_HEIGHT * 1.5)
return toes_down * toes_up
def _upright_reward(physics, deviation_angle=0):
"""Returns a reward proportional to how upright the torso is.
Args:
physics: an instance of `Physics`.
deviation_angle: A float, in degrees. The reward is 0 when the torso is
exactly upside-down and 1 when the torso's z-axis is less than
`deviation_angle` away from the global z-axis.
"""
deviation = np.cos(np.deg2rad(deviation_angle))
return rewards.tolerance(
physics.torso_upright(),
bounds=(deviation, float('inf')),
sigmoid='linear',
margin=1 + deviation,
value_at_margin=0)
class Move(base.Task):
"""A quadruped task solved by moving forward at a designated speed."""
def __init__(self, desired_speed, random=None):
"""Initializes an instance of `Move`.
Args:
desired_speed: A float. If this value is zero, reward is given simply
for standing upright. Otherwise this specifies the horizontal velocity
at which the velocity-dependent reward component is maximized.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._desired_speed = desired_speed
super().__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Args:
physics: An instance of `Physics`.
"""
# Initial configuration.
orientation = self.random.randn(4)
orientation /= np.linalg.norm(orientation)
_find_non_contacting_height(physics, orientation)
super().initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation to the agent."""
return _common_observations(physics)
def get_reward(self, physics):
"""Returns a reward to the agent."""
# Move reward term.
move_reward = rewards.tolerance(
physics.torso_velocity()[0],
bounds=(self._desired_speed, float('inf')),
margin=self._desired_speed,
value_at_margin=0.5,
sigmoid='linear')
return _upright_reward(physics) * move_reward
class Stand(base.Task):
"""A quadruped task solved by moving forward at a designated speed."""
def __init__(self, random=None, goal='stand'):
"""Initializes an instance of `Move`.
Args:
desired_speed: A float. If this value is zero, reward is given simply
for standing upright. Otherwise this specifies the horizontal velocity
at which the velocity-dependent reward component is maximized.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
super().__init__(random=random)
self._goal = goal
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Args:
physics: An instance of `Physics`.
"""
# Initial configuration.
orientation = self.random.randn(4)
orientation /= np.linalg.norm(orientation)
_find_non_contacting_height(physics, orientation)
super().initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation to the agent."""
return _common_observations(physics)
def get_reward(self, physics):
"""Returns a reward to the agent."""
if self._goal == 'stand':
return _upright_reward(physics)
elif self._goal == 'lie_down':
return _lie_down_reward(physics)
elif self._goal == 'two_legs':
return _two_legs_reward(physics)
class Jump(base.Task):
"""A quadruped task solved by moving forward at a designated speed."""
def __init__(self, desired_height, random=None):
"""Initializes an instance of `Move`.
Args:
desired_speed: A float. If this value is zero, reward is given simply
for standing upright. Otherwise this specifies the horizontal velocity
at which the velocity-dependent reward component is maximized.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._desired_height = desired_height
super().__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Args:
physics: An instance of `Physics`.
"""
# Initial configuration.
orientation = self.random.randn(4)
orientation /= np.linalg.norm(orientation)
_find_non_contacting_height(physics, orientation)
super().initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation to the agent."""
return _common_observations(physics)
def get_reward(self, physics):
"""Returns a reward to the agent."""
# Move reward term.
jump_up = rewards.tolerance(
physics.com_height(),
bounds=(self._desired_height, float('inf')),
margin=self._desired_height,
value_at_margin=0.5,
sigmoid='linear')
return _upright_reward(physics) * jump_up
class Roll(base.Task):
"""A quadruped task solved by moving forward at a designated speed."""
def __init__(self, desired_speed, random=None):
"""Initializes an instance of `Move`.
Args:
desired_speed: A float. If this value is zero, reward is given simply
for standing upright. Otherwise this specifies the horizontal velocity
at which the velocity-dependent reward component is maximized.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._desired_speed = desired_speed
super().__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Args:
physics: An instance of `Physics`.
"""
# Initial configuration.
orientation = self.random.randn(4)
orientation /= np.linalg.norm(orientation)
_find_non_contacting_height(physics, orientation)
super().initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation to the agent."""
return _common_observations(physics)
def get_reward(self, physics):
"""Returns a reward to the agent."""
# Move reward term.
move_reward = rewards.tolerance(
np.linalg.norm(physics.torso_velocity()),
bounds=(self._desired_speed, float('inf')),
margin=self._desired_speed,
value_at_margin=0.5,
sigmoid='linear')
return _upright_reward(physics) * move_reward
class Escape(base.Task):
"""A quadruped task solved by escaping a bowl-shaped terrain."""
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Args:
physics: An instance of `Physics`.
"""
# Get heightfield resolution, assert that it is square.
res = physics.model.hfield_nrow[_HEIGHTFIELD_ID]
assert res == physics.model.hfield_ncol[_HEIGHTFIELD_ID]
# Sinusoidal bowl shape.
row_grid, col_grid = np.ogrid[-1:1:res*1j, -1:1:res*1j]
radius = np.clip(np.sqrt(col_grid**2 + row_grid**2), .04, 1)
bowl_shape = .5 - np.cos(2*np.pi*radius)/2
# Random smooth bumps.
terrain_size = 2 * physics.model.hfield_size[_HEIGHTFIELD_ID, 0]
bump_res = int(terrain_size / _TERRAIN_BUMP_SCALE)
bumps = self.random.uniform(_TERRAIN_SMOOTHNESS, 1, (bump_res, bump_res))
smooth_bumps = ndimage.zoom(bumps, res / float(bump_res))
# Terrain is elementwise product.
terrain = bowl_shape * smooth_bumps
start_idx = physics.model.hfield_adr[_HEIGHTFIELD_ID]
physics.model.hfield_data[start_idx:start_idx+res**2] = terrain.ravel()
super().initialize_episode(physics)
# If we have a rendering context, we need to re-upload the modified
# heightfield data.
if physics.contexts:
with physics.contexts.gl.make_current() as ctx:
ctx.call(mjlib.mjr_uploadHField,
physics.model.ptr,
physics.contexts.mujoco.ptr,
_HEIGHTFIELD_ID)
# Initial configuration.
orientation = self.random.randn(4)
orientation /= np.linalg.norm(orientation)
_find_non_contacting_height(physics, orientation)
def get_observation(self, physics):
"""Returns an observation to the agent."""
obs = _common_observations(physics)
obs['origin'] = physics.origin()
obs['rangefinder'] = physics.rangefinder()
return obs
def get_reward(self, physics):
"""Returns a reward to the agent."""
# Escape reward term.
terrain_size = physics.model.hfield_size[_HEIGHTFIELD_ID, 0]
escape_reward = rewards.tolerance(
physics.origin_distance(),
bounds=(terrain_size, float('inf')),
margin=terrain_size,
value_at_margin=0,
sigmoid='linear')
return _upright_reward(physics, deviation_angle=20) * escape_reward
class Fetch(base.Task):
"""A quadruped task solved by bringing a ball to the origin."""
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Args:
physics: An instance of `Physics`.
"""
# Initial configuration, random azimuth and horizontal position.
azimuth = self.random.uniform(0, 2*np.pi)
orientation = np.array((np.cos(azimuth/2), 0, 0, np.sin(azimuth/2)))
spawn_radius = 0.9 * physics.named.model.geom_size['floor', 0]
x_pos, y_pos = self.random.uniform(-spawn_radius, spawn_radius, size=(2,))
_find_non_contacting_height(physics, orientation, x_pos, y_pos)
# Initial ball state.
physics.named.data.qpos['ball_root'][:2] = self.random.uniform(
-spawn_radius, spawn_radius, size=(2,))
physics.named.data.qpos['ball_root'][2] = 2
physics.named.data.qvel['ball_root'][:2] = 5*self.random.randn(2)
super().initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation to the agent."""
obs = _common_observations(physics)
obs['ball_state'] = physics.ball_state()
obs['target_position'] = physics.target_position()
return obs
def get_reward(self, physics):
"""Returns a reward to the agent."""
# Reward for moving close to the ball.
arena_radius = physics.named.model.geom_size['floor', 0] * np.sqrt(2)
workspace_radius = physics.named.model.site_size['workspace', 0]
ball_radius = physics.named.model.geom_size['ball', 0]
reach_reward = rewards.tolerance(
physics.self_to_ball_distance(),
bounds=(0, workspace_radius+ball_radius),
sigmoid='linear',
margin=arena_radius, value_at_margin=0)
# Reward for bringing the ball to the target.
target_radius = physics.named.model.site_size['target', 0]
fetch_reward = rewards.tolerance(
physics.ball_to_target_distance(),
bounds=(0, target_radius),
sigmoid='linear',
margin=arena_radius, value_at_margin=0)
reach_then_fetch = reach_reward * (0.5 + 0.5*fetch_reward)
return _upright_reward(physics) * reach_then_fetch |