Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,768 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import agent.dreamer_utils as common
from collections import defaultdict
import numpy as np
class ResidualLinear(nn.Module):
def __init__(self, in_channels, out_channels, norm='layer', act='SiLU', prenorm=False):
super().__init__()
self.norm_layer = common.NormLayer(norm, in_channels if prenorm else out_channels)
self.act = common.get_act(act)
self.layer = nn.Linear(in_channels, out_channels)
self.prenorm = prenorm
self.res_proj = nn.Identity() if in_channels == out_channels else nn.Linear(in_channels, out_channels)
def forward(self, x):
if self.prenorm:
h = self.norm_layer(x)
h = self.layer(h)
else:
h = self.layer(x)
h = self.norm_layer(h)
h = self.act(h)
return h + self.res_proj(x)
class UNetDenoiser(nn.Module):
def __init__(self, in_channels : int, mid_channels : int, n_layers : int, norm='layer', act= 'SiLU', ):
super().__init__()
out_channels = in_channels
self.down = nn.ModuleList()
for i in range(n_layers):
if i == (n_layers - 1):
self.down.append(ResidualLinear(in_channels, mid_channels, norm=norm, act=act))
else:
self.down.append(ResidualLinear(in_channels, in_channels, norm=norm, act=act))
self.mid = nn.ModuleList()
for i in range(n_layers):
self.mid.append(ResidualLinear(mid_channels, mid_channels, norm=norm, act=act))
self.up = nn.ModuleList()
for i in range(n_layers):
if i == 0:
self.up.append(ResidualLinear(mid_channels * 2, out_channels, norm='none', act='Identity'))
else:
self.up.append(ResidualLinear(out_channels * 2, out_channels, norm=norm, act=act))
def forward(self, x):
down_res = []
for down_layer in self.down:
x = down_layer(x)
down_res.append(x)
for mid_layer in self.mid:
x = mid_layer(x)
down_res.reverse()
for up_layer, res in zip(self.up, down_res):
x = up_layer(torch.cat([x, res], dim=-1))
return x
class VideoSSM(common.EnsembleRSSM):
def __init__(self, *args,
connector_kl={}, temporal_embeds=False, detached_post=True, n_frames=8,
token_dropout=0., loss_scale=1, clip_add_noise=0, clip_lafite_noise=0,
rescale_embeds=False, denoising_ae=False, learn_initial=True, **kwargs,):
super().__init__(*args, **kwargs)
#
self.n_frames = n_frames
# by default, adding the n_frames in actions (doesn't hurt and easier to test whether it's useful or not)
self.viclip_emb_dim = kwargs['action_dim'] - self.n_frames
#
self.temporal_embeds = temporal_embeds
self.detached_post = detached_post
self.connector_kl = connector_kl
self.token_dropout = token_dropout
self.loss_scale = loss_scale
self.rescale_embeds = rescale_embeds
self.clip_add_noise = clip_add_noise
self.clip_lafite_noise = clip_lafite_noise
self.clip_const = np.sqrt(self.viclip_emb_dim).item()
self.denoising_ae = denoising_ae
if self.denoising_ae:
self.aligner = UNetDenoiser(self.viclip_emb_dim, self.viclip_emb_dim // 2, n_layers=2, norm='layer', act='SiLU')
self.learn_initial = learn_initial
if self.learn_initial:
self.initial_state_pred = nn.Sequential(
nn.Linear(kwargs['action_dim'], kwargs['hidden']),
common.NormLayer(kwargs['norm'],kwargs['hidden']), common.get_act('SiLU'),
nn.Linear(kwargs['hidden'], kwargs['hidden']),
common.NormLayer(kwargs['norm'],kwargs['hidden']), common.get_act('SiLU'),
nn.Linear(kwargs['hidden'], kwargs['deter'])
)
# Deleting non-useful models
del self._obs_out
del self._obs_dist
def initial(self, batch_size, init_embed=None, ignore_learned=False):
init = super().initial(batch_size)
if self.learn_initial and not ignore_learned and hasattr(self, 'initial_state_pred'):
assert init_embed is not None
# patcher to avoid edge cases
if init_embed.shape[-1] == self.viclip_emb_dim:
patcher = torch.zeros((*init_embed.shape[:-1], 8), device=self.device)
init_embed = torch.cat([init_embed, patcher], dim=-1)
init['deter'] = self.initial_state_pred(init_embed)
stoch, stats = self.get_stoch_stats_from_deter_state(init)
init['stoch'] = stoch
init.update(stats)
return init
def get_action(self, video_embed):
n_frames = self.n_frames
B, T = video_embed.shape[:2]
if self.rescale_embeds:
video_embed = video_embed * self.clip_const
temporal_embeds = F.one_hot(torch.arange(T).to(video_embed.device) % n_frames, n_frames).reshape(1, T, n_frames,).repeat(B, 1, 1,)
if not self.temporal_embeds:
temporal_embeds *= 0
return torch.cat([video_embed, temporal_embeds],dim=-1)
def update(self, video_embed, wm_post):
n_frames = self.n_frames
B, T = video_embed.shape[:2]
loss = 0
metrics = {}
# NOVEL
video_embed = video_embed[:,n_frames-1::n_frames] # tested
video_embed = video_embed.to(self.device)
video_embed = video_embed.reshape(B, T // n_frames, 1, -1).repeat(1,1, n_frames, 1).reshape(B, T, -1)
orig_video_embed = video_embed
if self.clip_add_noise > 0:
video_embed = video_embed + torch.randn_like(video_embed, device=video_embed.device) * self.clip_add_noise
video_embed = nn.functional.normalize(video_embed, dim=-1)
if self.clip_lafite_noise > 0:
normed_noise = F.normalize(torch.randn_like(video_embed, device=video_embed.device), dim=-1)
video_embed = (1 - self.clip_lafite_noise) * video_embed + self.clip_lafite_noise * normed_noise
video_embed = nn.functional.normalize(video_embed, dim=-1)
if self.denoising_ae:
assert (self.clip_lafite_noise + self.clip_add_noise) > 0, "Nothing to denoise"
denoised_embed = self.aligner(video_embed)
denoised_embed = F.normalize(denoised_embed, dim=-1)
denoising_loss = 1 - F.cosine_similarity(denoised_embed, orig_video_embed, dim=-1).mean() # works same as F.mse_loss(denoised_embed, orig_video_embed).mean()
loss += denoising_loss
metrics['aligner_cosine_distance'] = denoising_loss
# if using a denoiser, it's the denoiser's duty to denoise the video embed
video_embed = orig_video_embed # could also be denoised_embed for e2e training
embed_actions = self.get_action(video_embed)
if self.detached_post:
wm_post = { k : v.reshape(B, T, *v.shape[2:]).detach() for k,v in wm_post.items() }
else:
wm_post = { k : v.reshape(B, T, *v.shape[2:]) for k,v in wm_post.items() }
# Get prior states
prior_states = defaultdict(list)
for t in range(T):
# Get video action
action = embed_actions[:, t]
if t == 0:
prev_state = self.initial(batch_size=wm_post['stoch'].shape[0], init_embed=action)
else:
# Get deter from prior, get stoch from wm_post
prev_state = prior
prev_state[self.cell_input] = wm_post[self.cell_input][:, t-1]
if self.token_dropout > 0:
prev_state['stoch'] = torch.einsum('b...,b->b...', prev_state['stoch'], (torch.rand(B, device=action.device) > self.token_dropout).float() )
prior = self.img_step(prev_state, action)
for k in prior:
prior_states[k].append(prior[k])
# Aggregate
for k in prior_states:
prior_states[k] = torch.stack(prior_states[k], dim=1)
# Compute loss
prior = prior_states
kl_loss, kl_value = self.kl_loss(wm_post, prior, **self.connector_kl)
video_loss = self.loss_scale * kl_loss
metrics['connector_kl'] = kl_value.mean()
loss += video_loss
# Compute initial KL
video_embed = video_embed.reshape(B, T // n_frames, n_frames, -1)[:,1:,0].reshape(B * (T//n_frames-1), 1, -1) # taking only one (0) and skipping first temporal step
embed_actions = self.get_action(video_embed)
wm_post = { k : v.reshape(B, T // n_frames, n_frames, *v.shape[2:])[:,1:,0].reshape(B * (T//n_frames-1), *v.shape[2:]) for k,v in wm_post.items() }
action = embed_actions[:, 0]
prev_state = self.initial(batch_size=wm_post['stoch'].shape[0], init_embed=action)
prior = self.img_step(prev_state, action)
kl_loss, kl_value = self.kl_loss(wm_post, prior, **self.connector_kl)
metrics['connector_initial_kl'] = kl_value.mean()
return loss, metrics
def video_imagine(self, video_embed, dreamer_init=None, sample=True, reset_every_n_frames=True, denoise=False):
n_frames = self.n_frames
B, T = video_embed.shape[:2]
if self.denoising_ae and denoise:
denoised_embed = self.aligner(video_embed)
video_embed = F.normalize(denoised_embed, dim=-1)
action = self.get_action(video_embed)
# Imagine
init = self.initial(batch_size=B, init_embed=action[:, 0]) # -> this ensures only stoch is used from the current frame
if dreamer_init is not None:
init[self.cell_input] = dreamer_init[self.cell_input]
if reset_every_n_frames:
prior_states = defaultdict(list)
for action_chunk in torch.chunk(action, T // n_frames, dim=1):
prior = self.imagine(action_chunk, init, sample=sample)
for k in prior:
prior_states[k].append(prior[k])
# -> this ensures only stoch is used from the current frame
init = self.initial(batch_size=B, ignore_learned=True)
init[self.cell_input] = prior[self.cell_input][:, -1]
# Agg
for k in prior_states:
prior_states[k] = torch.cat(prior_states[k], dim=1)
prior = prior_states
else:
prior = self.imagine(action, init, sample=sample)
return prior |